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FUEL PROPERTIES

Summary. With growing environmental concerns surrounding it, all efforts in the aviation
sector are moving toward reducing the ecological footprint of this sector. One of the promising
solutions is sustainable aviation fuel, which offers an alternative to traditional jet fuel. This
study investigates the possibility of using a developed machine learning model designed to
forecast aircraft emissions using a set of 11 inputs related to engine specifications, fuel
properties, and ambient air conditions. The model is trained based on version 30 of the
International Civil Aviation Organization’s engine emissions databank. An artificial neural
network was created after data cleaning and preparation for its strength in modeling intricate,
nonlinear interactions between inputs and predicted emissions. The model generates estimates
of the emission index for carbon dioxide, nitrogen oxides, carbon monoxide, and fuel flow.
These predictions help assess how adjustments in operational parameters influence emissions.
Additionally, the model can support more refined analysis across different flight scenarios by
incorporating data from the Automatic Dependent Surveillance-Broadcast and weather
information.

1. INTRODUCTION

The aviation sector has a direct effect on the Global Greenhouse Gas (GHG) output. Recent studies
indicate that commercial flights are responsible for around 2.5% of the world’s carbon dioxide (CO-)
emissions [1]. As air travel continues to expand, the urgency to minimize its ecological effects grows
more pressing. Among the range of proposed solutions, the use of Sustainable Aviation Fuel (SAF)
stands out due to its renewable origins and its capacity to offer a cleaner alternative to traditional jet
fuels. Despite its promise, the large-scale integration of SAF into the industry demands reliable, data-
centred approaches capable of accurately estimating its impact, particularly regarding emission
reductions.

Various interacting factors, including the technical performance of engines, flight operating
conditions, and the characteristics of the fuel, influence aircraft emissions. The dynamic relationship
among these elements makes precise emissions forecasting challenging when using conventional
approaches [2]. Aviation engines emit different types of air pollutants, including carbon monoxide (CO),
nitrogen oxides (NOy), particulate matter (PM), unburned hydrocarbons (UHCs), and water vapour, with
carbon dioxide (CO:) remaining the most significant contributor to global warming. While CO- output
directly reflects fuel usage, emissions like NOx and PM depend on the fuel’s chemical makeup and the
engine’s design [3]. Conventional estimation techniques often rely on oversimplified assumptions or
generalized models of fuel burn, which can result in misleading assessments and limitations, especially
when analyzing the environmental advantages offered by SAF [4, 5]. In addressing these limitations,
machine learning (ML) methods have shown potential as a powerful tool for enhancing the precision of
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emissions forecasting within the aviation industry. Among various ML methods, artificial neural
networks (ANNSs) are particularly effective due to their ability to model intricate, nonlinear interactions
among a wide range of input variables [4]. This makes them especially suitable for analyzing aircraft
emissions.

Unlike conventional estimation techniques, ML-based models are capable of processing large,
multidimensional datasets encompassing operational conditions such as thrust levels, cruising altitude,
and air speed, along with engine-specific parameters and fuel characteristics. When trained on
comprehensive data sources, these models can deliver highly accurate predictions and uncover
meaningful patterns in how operational and technical factors combine to impact emission outputs. The
Engine Emissions Databank (EEDB), maintained by the International Civil Aviation Organization
(ICAO), offers a rich dataset containing detailed metrics on engine performance [5]. This resource
includes information on engine classifications, thrust levels, and patterns of fuel consumption, making
it well-suited for training ML models aimed at forecasting aircraft emissions. When paired with real-
time operational data from the ADS-B systems, these models can deliver near-instantaneous estimates
of emissions as flights progress [6]. Additionally, by integrating fuel-specific characteristics such as
chemical structure, energy content, and combustion behaviour, ML approaches can accurately reflect
variations in emissions produced by SAF compared to traditional jet fuels.

This study introduces a machine learning-based model designed to predict aircraft emissions. The
model integrates 11 critical input variables, encompassing engine performance data, operational factors,
and fuel characteristics. Utilizing version 30 of the ICAO EEDB, the model strives to deliver accurate
emissions forecasts. Compared to traditional approaches, this method provides distinct advantages by
capturing the intricate relationships between engine operation, flight parameters, and fuel composition.
Moreover, it offers valuable insights into the potential emissions reductions achievable through the use
of fuel with various aromatic content under several engine configurations and flight scenarios.

2. LITERATURE REVIEW

Amid growing global awareness of climate change and environmental sustainability, the aviation
industry is placing greater emphasis on minimizing its ecological impact. This shift in priorities has
highlighted the urgent need for more advanced, intelligent systems that can reliably analyze and predict
engine emissions under a wide range of flight and weather conditions [7]. Compared to conventional
modeling approaches that served as a reliable benchmark, today’s aviation landscape is far more
complex. The rapid evolution of engine technologies and the rising adoption of SAF have rendered
many traditional methods outdated or inadequate. These emerging factors introduce levels of variability
and sophistication that older tools were not designed to handle. As a result, there is now a critical push
to develop innovative solutions that can keep pace with modern advancements while supporting the
industry’s broader commitment to reducing greenhouse gas emissions and meeting international
sustainability targets [8].

As an example of using ML for estimating aviation emissions, in 2024, a team of engineers
successfully developed a model to estimate the actual take-off weight based on ADS-B data with an
accuracy of less than 2%, which constitutes an important input for models estimating emissions and fuel
flow [9]. Another study exploited ML for calculating NOx, PM emissions, and fuel efficiency metrics,
which used highly accurate multi-layer perceptron (MLP) neural network models to predict emissions
and the combustion process properties. The investigation is carried out on a medium-duty diesel engine
based on a high-resolution dataset of 6,277 samples as a training source [10]. The aviation industry is
also seeking to focus on the emissions effect, not only for commercial aircraft but also for advanced
small or personal aircraft [11].

These developments highlight the real capacity of machine learning to improve the precision of
accurate emission prediction. As the aviation industry strives toward greener operations, integrating
intelligent, data-driven approaches will be key to achieving meaningful and measurable progress in
environmental performance.
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3. APPROACH AND ML MODEL DEVELOPMENT

The modeling approach adopted in this study is centred on a supervised learning framework using
ANNs. The ANN model was selected for its proven ability to handle complex, nonlinear functions
within high-dimensional datasets. The methodology integrates multiple sources of information, ranging
from standardized engine specifications to real-world flight operations and detailed fuel characteristics,
to construct a reliable emissions prediction tool. This combination enables the model to simulate
emissions performance under a wide array of scenarios. The development pipeline includes structured
phases: data collection, refinement, input selection, model configuration, training, and validation. Each
stage is outlined in the sections that follow.

3.1. Data Sources

The core dataset utilized in this research is derived from version 30 of the EEDB, maintained by the
ICAO [5]. This dataset contains 834 samples providing standardized emissions and performance metrics
for an extensive spectrum of certified aircraft engines, making it a reliable foundation for emissions
modeling. Key variables include engine classification, rated thrust levels, and emissions indices for
major pollutants, namely NOy and CO, and fuel flow (FF), recorded under four engine thrust levels: 7%
at idle, 30% at approach, 85% at climb-out, and finally at 100% at take-off. This database can be used
for aircraft altitude below 914.4 m [3].

3.2. Data Preprocessing

Before training the predictive model, the raw dataset was cleaned comprehensively, filtered, and
transformed to ensure data quality and consistency. This included the identification and removal of
missing values, as well as the detection and treatment of outliers that could distort model performance.

Additionally, several ambient condition variables were simplified to streamline the dataset and
reduce dimensionality without losing critical environmental context. The original dataset included
minimum and maximum values for ambient pressure, temperature, and humidity. These were
consolidated into three averaged values to reduce redundancy and maintain a manageable number of
input features: ambient pressure (kPa), ambient temperature (K), and humidity (kg/kg). Each new
variable was calculated as the arithmetic mean of its corresponding minimum and maximum readings.
This approach provided a balanced representation of ambient conditions while minimizing potential
multicollinearity and simplifying the learning task for the neural network.

As part of the data preparation process, special attention was given to how engine thrust levels were
represented. In the original dataset, emissions data were provided across four discrete thrust settings:
7%, 30%, 85%, and 100%. Rather than treating these as separate observations in fixed columns, the
dataset was reformatted to better align with the ML model’s structure by duplicating the dataset four
times, with each duplicate representing one of the thrust levels. A new column labeled “Thrust Level
(%)” was introduced and assigned the corresponding value (7, 30, 85, or 100) in each copy. This
transformation allowed the thrust level to be treated as a continuous input variable, enabling the model
to learn its effect on emissions more flexibly and accurately. Integrating this parameter as a standalone
feature enhanced the model’s versatility, allowing it to be applied across a broader range of operational
conditions, rather than being limited to predefined power settings.

Finally, categorical data were appropriately encoded to ensure compatibility with the ML model.
Specifically, Scikit-learn’s Label Encoder function was applied to the string input variables to convert
their categorical values into a numerical format, enabling the ANN to process them effectively during
training [12].

3.3. Model Structure

The architecture of the predictive model is based on a feedforward ANN owing to its proven ability
to capture nonlinear interactions between multiple independent variables and continuous emission
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outputs. As illustrated in Fig. 1, the model is divided into three main parts: the input layer, hidden layers,
and output layer. The implementation uses Python scikit-learn’s MLPRegressor, which provides a
flexible and efficient framework for training and tuning multi-layer perceptron models for regression
tasks [13].
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Fig. 1. ANN-model structure for predicting aircraft engine NOx, CO emissions, and FF

The input layer consists of 11 neurons, each corresponding to a distinct input feature categorized into
three groups, as described in Table 1. This includes a diverse set of variables that allows the model to
account for the wide range of factors influencing aircraft emissions.

Table 1
The model inputs
Group Parameter Unit
Thrust level % %
Engine type -
Engine specifications Pressure ratio -
Bypass ratio -
Rated thrust kN
Fuel type -
Fuel properties Hydrogen-to-Carbon (H/C) ratio -
Aromatic hydrocarbon content %
Temperature Kelvin
Ambient air parameters Pressure kPa
Humidity kg water/kg dry air

Information flows from the input layer into the hidden layers, where nonlinear transformations are
applied. These layers use the rectified linear unit (ReLU) as the activation function [13]. The ReLU
function enables the model to learn complex patterns without introducing vanishing gradient issues. The
output layer includes three neurons corresponding to the target outputs: fuel flow (in kg/sec), NOx
emission index (in g/kg), and CO emission index (in g/kg). CO, emissions can be calculated from the
predicted FF using a factor of 3.149 kg CO, per kg of burned fuel [3].

Training was conducted using the Adam optimizer, which integrated the benefits of momentum and
adaptive learning rates, ensuring faster convergence and stable updates. The mean squared error (MSE)
served as the loss function, aligning with the performance metrics to ensure consistency. Furthermore,
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methods such as early stopping and dropout were employed to mitigate the risk of overfitting and
enhance the model’s ability to generalize to novel data.

3.4. Model Evaluation

The dataset was divided into two subsets to assess the model’s ability to generalize to new, unseen
data based on [14]. Specifically, 90% of the data was used for training, allowing the model to learn from
a broad range of operational scenarios and engine characteristics, while the remaining 10% was reserved
for testing, providing an independent validation set. This method ensured that the model’s predictive
capability was evaluated on data it had not encountered during training, offering a more realistic estimate
of its applicability in real-world settings. A comprehensive assessment strategy was adopted to evaluate
the model’s predictive performance, focusing on both accuracy and reliability. Four key statistical
metrics were used: mean absolute error (MAE), MSE, root mean squared error (RMSE), and R? score
(coefficient of determination), all of which were calculated using the sklearn.metrics library [15]. Each
metric provided unique insights into the model’s performance, helping to identify its strengths and areas
for improvement. Together, these metrics offered a well-rounded evaluation of the model’s ability to
capture underlying patterns in the data and its robustness across different emissions scenarios.

MAE measures the average magnitude of prediction errors without considering their direction and
provides a straightforward interpretation of how far, on average, the model’s predictions deviate from
the actual values [16]. MAE is particularly useful because it is not overly sensitive to outliers, making
it a reliable indicator of general prediction accuracy across typical operating conditions. Mathematically,
MAE is expressed as shown in Equation (1):

MAE = =3 ly; = 9il, (1)
where:
n: number of data points,
y;: actual value (ground truth),
¥;: predicted value for each data point.

MSE quantifies the average of the squared differences between predicted and actual values. By
squaring the errors, MSE places greater emphasis on larger deviations, thereby penalizing significant
mispredictions more than smaller ones [17]. This makes it especially effective for identifying whether
the model occasionally produces substantial errors under specific input conditions. Mathematically,
MSE is expressed as Equation (2):

MSE =~ 31, (v; — )% @)

RMSE is derived from the square root of MSE and provides an error measure in the same units as
the target variable [18]. This makes RMSE more interpretable in practical terms compared to MSE. As
expressed formally in Equation (3):

RMSE = VMSE. 3)

The R? score, also known as the coefficient of determination, assesses the model’s ability to
accurately predict values by measuring the proportion of variance explained [19]. This metric is
particularly valuable for assessing the model’s ability to generalize across different datasets and
operational scenarios. R? score is expressed in Equation (4):

2 — 1 _ SSres
RZ=1 e “4)

where:
S$S,es: sum of squares residuals,
S$Sto¢: total sum of squares.

Three statistical evaluation metrics (fuel flow, NO,, and CO) were computed individually for each
target output so the predictive performance of the machine learning model could be thoroughly assessed.
Rather than presenting a single aggregate performance score, separating the analysis across all three
outputs revealed subtle differences in prediction accuracy and highlighted areas where the model
excelled or underperformed, as shown in Table 2.
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Table 2
Performance metrics for the ANN prediction model for fuel flow, NOx,
and CO
Output MAE MSE RMSE R? Score
Fuel Flow 0.028 0.002 0.039 0.998
NOy 0.423 0.653 0.808 0.995
CO 0.803 4.671 2.161 0.970

In addition to the quantitative summary, visual analysis was conducted through the generation of
scatter plots that depict the relationship between actual and predicted values for each of the output
variables. Three separate plots were created for FF, NOx, and CO to illustrate the model’s ability to
approximate real-world measurements (Figs. 2—4). These figures serve as diagnostic tools, allowing for
immediate visual assessment of model fidelity. Ideally, a well-performing model will yield points that
cluster tightly along the reference line (x =Yy), indicating high correlation between predictions and actual
values. The extent and nature of any systematic errors or biases in the model’s outputs are shown as the
deviation from this line. When viewed alongside statistical metrics, these visualizations provide a more
complete picture of model effectiveness, offering both numerical precision and visual context.
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Fig. 3. Scatter plot for NOx predicted values vs actual
values

Fig. 2. Scatter plot for fuel flow predicted values vs
actual values

4. RESULTS

For better evaluation of the ML model, predicted values for fuel flow and emission indexes were
compared against reference data [20] from 5% to 100% thrust range of the CFM56-7B26 engine under
the same conditions. As shown in Fig. 5, the model demonstrates strong agreement with the reference
curves, especially for fuel flow, for which the predictions (solid red) closely match the actual values
(dashed red), validating the model’s accuracy in capturing core engine behaviour.

The NOy emission index (solid blue) shows a consistent upward trend with increasing thrust, aligning
with expected thermodynamic behavior due to higher combustion temperatures at elevated power
settings. This indicates the model’s ability to reflect the environmental impact during high-thrust
operations like take-off and climb.
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Fig. 4. Scatter plot for CO predicted values vs. actual values

In contrast, the CO emission index (solid green) is highest at low thrust levels and rapidly declines
as thrust increases. This inverse trend shows that incomplete combustion at idle and improved efficiency
at cruise are captured well by the model.

Overall, the model effectively captures nonlinear interactions between engine inputs and emission

behaviour, providing a credible tool for emissions assessment and engine performance.
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Fig. 5. Predicted values for CFM56-7B26
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Another chart was created for the V2500-A1 engine. The model’s predictions for fuel flow (red),
NOx emissions (blue), and CO emissions (green) provide insights into combustion behaviour under
varying operational loads. As illustrated in Fig. 6 at 100% thrust (for one engine), which represents
maximum power during take-off, the model predicts the highest fuel flow, approximately 1.1 kg/sec,
consistent with the OpenAP fuel flow calculation model (for two engines) at altitude 0 [21] as shown in
Fig. 7.
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5. FUTURE WORKS

Future research could build on the current findings by exploring the expansion of emission prediction
models to include additional pollutants such as UHC and PM, which are critical for assessing the full
environmental impact of aircraft engines. One promising direction is to study the utilization of the ICAO
EEDB as a training source, given its standardized structure and extensive coverage of certified engine
emissions data. Moreover, future efforts should consider narrowing the modeling focus to a single
engine type or family. This approach would reduce the variability introduced by different engine
architectures, allowing for more precise tuning of model parameters.

Finally, integrating temporal and environmental variables (such as engine age, maintenance cycles,
ADS-B data, and real-time ambient conditions) could further enhance the model’s ability to reflect real-
world performance. These improvements would support more robust, engine-specific emissions
forecasting tools capable of informing policy, optimizing operations, and supporting compliance with
increasingly stringent international environmental regulations.

6. CONCLUSIONS

This study introduced a novel ML model designed to predict aircraft emissions by integrating engine
specifications, operational parameters, and fuel properties. The model demonstrated a high accuracy rate
in estimating key emission indices as evidenced by high R* scores for NOx (0.995), CO (0.970), and FF
(0.998). The model provides a novel approach by treating thrust level as a continuous input feature,
enhancing the ANN’s ability to learn its nuanced effects across the full range of engine operations.

From a theoretical standpoint, this work advances the application of ML in aviation by showing that
complex, nonlinear relationships between inputs and emissions can be effectively captured and
generalized. The conversion of discrete emissions data into a unified, structured learning format,
combined with the consolidation of ambient variables, enabled the ANN to outperform traditional
estimation methods in both flexibility and precision.
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Importantly, the model’s structure allows for the seamless integration of high-resolution, real-time
data (e.g., from ADS-B or environmental sensors), enabling dynamic in situ emission estimations. This
capability positions the model as a scalable tool for future deployment in operational decision-making,
sustainability assessments, and regulatory compliance frameworks, especially as the aviation sector
increases its reliance on SAF and seeks more accurate environmental monitoring systems.
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