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PREDICTION OF THE MAIN ENVIRONMENTAL AND ENERGY 
CHARACTERISTICS OF DIESEL ENGINES USING AN ARTIFICIAL 
NEURAL NETWORK FOR PURE DIESEL FUEL, PURE HVO, AND A 
MIXTURE OF THESE FUELS IN THE RATIO 50/50 BY VOLUME 

 
Summary. This research assesses the influence of different quantities of hydrotreated 

vegetable oil (HVO) in diesel fuel on the performance of the engine and the emissions it 
produces. The particular areas of interest are the level of smoke emitted and the brake 
thermal efficiency (BTE). A series of engine experiments were undertaken to quantify 
emissions and performance characteristics under various operating regimes using three 
distinct fuel blends: D100 (pure diesel), HVO50 (50% HVO mixture), and HVO100 (pure 
HVO). The results show a tendency to reduce soot emissions when the amount of HVO in 
the mixture reaches 50%, but in order to accurately determine the correlation between the 
amount of HVO and emissions, additional studies with various concentrations of HVO and 
diesel mixtures are necessary. Similarly, the results show a slight improvement in BTE 
stability with a 50% HVO blend, but more studies with different percentages of HVO-
diesel blends are needed to reliably determine changes in BTE. This indicates a trend of 
change in engine performance with increasing HVO concentration in diesel fuel. In order 
to forecast emissions and performance indicators under different operating scenarios, we 
used artificial neural networks ANNs, which demonstrated excellent prediction accuracy, 
exhibiting robust linear correlations between the expected and real values for all fuel types. 
This research emphasizes the advantages of utilizing HVO in diesel engines for both 
environmental impact and performance. It also emphasizes the usefulness of ANNs in 
optimizing engine settings to improve efficiency and minimize emissions. The results 
endorse the further use of HVO as a viable substitute for conventional diesel, leading to 
less ecological consequences and enhanced engine efficiency. 

 
 

1. INTRODUCTION 
 

In transportation, the usage of hydrotreated vegetable oil (HVO) in diesel is very important for 
several reasons: due to regulatory compliance [1], for environmental benefits [2], for improved 
performance [3], and due to market demand [4]. Many countries (for example, in the EU) have 
governmental regulations for i) reducing greenhouse gas emissions and ii) promoting the use of 
ecologically friendly products [5]. As a renewable alternative to traditional diesel fuel, HVO emits lower 
levels of technical pollutants such as carbon monoxide (CO) and hydrocarbons (HC) [6]. For 
environmental sustainability, increasing the amount of HVO in diesel reduces emissions. Mixing HVO 
and fossil fuels allows compliance with these rules over a wide range of applications [7]. In the 
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framework of improved performance of diesel engines, usage of HVO can significantly increase the 
power output and engine longevity [8]. Due to higher cetane numbers compared to traditional diesel, 
HVO-containing fuel burns more cleanly, resulting in smoother engine operation and better fuel 
economy [9, 10]. Consumer demand for organic products (including transport fuel) is growing [11, 12]. 
By offering mixtures of diesel with higher HVO content, transport companies can meet this demand and 
increase their market competitiveness. 

Generally, adjusting the amount of HVO in diesel for transportation purposes can bring about a range 
of benefits, including improved performance, environmental protection, and regulatory compliance. The 
amount of HVO in diesel is not a solved problem. The usage of commercially available diesel containing 
10%, 30%, 40%, and 50% HVO supplements (HVO10, HVO30, HVO40, HVO50) shows several 
benefits in the plane of ecology (decreased levels of pollutants). However, different energetical regimes 
of diesel engines may not be related to the linear dependence of outcome distributions. More strictly, 
the prognosis and prediction of pollutants of diesel engines working at large intervals of different 
regimes is a very complicated task that could be solved in an approximating way using artificial neural 
network (ANN) algorithms [13]. 

This work is devoted to estimating the quality of ANN prognosis for several types of pollutants 
(smoke, CO2, NOx) in diesel outcomes when diesel engine works in a wide range of regimes using 
different commercial fuels: D100 (pure diesel), HVO50 (containing 50% HVO supplement), and 
HVO100 (pure HVO). 

a) To establish a relationship for chemical parameters (smoke, CO2, NOx) related to diesel working 
regime and fuel type (D100, HVO50, HVO100). 

b) To establish a relationship for an energetic parameter (BTE) related to diesel working regime 
and fuel type (D100, HVO50, HVO100). 

c) To estimate the parameters of ANN architecture and training regime for such type tasks of 
prognosis, 

d) To estimate the prognosis precision for HVO-containing fuels. 
Authors of publications in journals do not get honorarium and also agree with the publication of 

articles in the printed version of the journal and also on the internet version. 
Recent advancements in predictive modeling for engine emissions have been significant. A study by 

[13] explored the relationship between engine power, vibrational and sound pressure levels, and exhaust 
emissions. It was found that engine power and the type of fuel significantly influence these variables, 
enhancing predictive models' capabilities for exhaust emissions. The root mean square (RMS) related 
function T11 was identified as a potent predictor within these models. Adding vibration data to these 
models not only enriched the dataset but also improved the accuracy of predicting emissions from 
biodiesel fuels. 

In another study, the effectiveness of different predictive models was assessed on a single-cylinder 
four-stroke engine, with findings highlighting the model's accuracy (MAPE < 1%) across most engine 
emission parameters such as max_press, CA05, and CO, among others. However, certain emissions like 
NOX remained challenging to predict, underscoring the need for developing new predictive techniques 
[14]. 

The role of machine learning, specifically ANNs, in predicting engine emissions has been 
increasingly recognized [15–17]. A particular study developed a 3-7-7-6 ANN model, integrating key 
combustion parameters to predict engine efficiency and emissions. This model demonstrated high 
accuracy with an R2 close to unity and a low RMSE, indicating its potential to aid engine design and 
development [18]. Despite its efficacy, the need for updating neural network algorithms as engine 
parameters evolve remains a critical consideration. 

Buscema [19] overviewed a feed-forward back propagation (BP) ANN. Buscema claimed that BP 
consisting of a single hidden layer is sufficient for mapping any function y=f(x). Practically, deviations 
from a target value are too large, and it is sometimes necessary to expand the architecture of ANN and 
use an ANN consisting of double hidden layers. This happens when the functions to simulate are highly 
complex. Sekhar et al. [20] observed the working of BP by approximating the non-linear association 
between the data and the yield by changing the weight regards inside. Murat [21] used a learning/training 
algorithm of BP ANN. Zhang et al. [22] described the feed-forward neural networks with random 
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weights (FNNRWs). The main behavior is related to clusterization: FNN divides large-scale data into 
subsets of the same size, and each subset derives the corresponding sub-model. The presented approach 
demonstrates the successful acceptance of processing huge datasets. 

The environmental implications of engine emissions are profound, contributing to natural disasters 
and climatic anomalies such as El Niño and forest fires. A broader perspective provided by [23] 
discusses the role of sustainable development goals set by the United Nations, emphasizing the 
importance of improving engine performance and reducing emissions through advanced machine 
learning techniques. These include not only ANNs but also other methods such as the relevance vector 
method, support vector machine, and genetic algorithms, which could further refine predictive accuracy 
and environmental sustainability. 

 
 

2. METHODS AND MATERIALS 
 

The experimental engine tests were carried out using the engine load bench and additional equipment 
as shown in Fig. 1. The engine used is a 1.9 TDI (VW) compression ignition four-stroke four-cylinder 
engine with air turbocharger and an air intercooler for which the EGR flow is cooled. The main technical 
characteristics of the engine are as follows: compression ratio 19.5, maximum power 66 kW (4000 rpm), 
maximum torque 180 Nm (2000–2500 rpm). The engine complies with the Euro 3 emission standard. 
The exhaust gas composition was measured before the oxidation catalyst. 

Technical characteristics of the equipment used for the engine performance measurement: engine 
load bench (KI-5543) torque measurement accuracy ±1.2 Nm, fuel consumption scale (SK-5000) 
measurement accuracy ±1.0 g, air mass meter (BOSCH HFM 5) accuracy ±2%, exhaust gas analyzer 
(AVL DiCom 4000) measurement accuracy ±0.1% for CO2, ±0.01% for CO, ±1 ppm for CH, ±1 ppm 
for NOx and ±0.01% for smoke (opacity). 

 
 
Fig. 1. Layout of engine performance test equipment 

 
In order to investigate the wide range of engine performance, the tests are carried out with the engine 

running in different regimes where the start of injection (SOI) and exhaust gas recirculation (EGR) were 
adjusted by the electronic control unit (ECU), with the additional adjustments of SOI and EGR. SOI was 
measured with an accuracy of ±1.0 crank angle degree (CAD) by connecting Vag-Com diagnostic 
equipment to the onboard diagnostic port. The EGR ratio is defined as the mass fraction of exhaust gas 
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on the total inlet air + exhaust gas input. The EGR ratio is based on the mass measurement of the intake 
air. In this case, the mass of the EGR is determined by calculating the difference between the mass of 
the intake air when the EGR is on and when the EGR is off.  

The experimental investigation of the engine was carried out in a rather narrow speed range, as it 
focused on the main operating modes of the engine in city driving. During the test, the engine speed was 
n = 2000 pm and n = 2500 rpm; torque was MB = 30, 60, 90, and 120 Nm; SOI was 0–16 CAD before 
top dead center (bTDC); and EGR was 0–0.4. The conditions of the different regimes of testing are 
described in Fig. 2. The research is divided into seven working regimes (I–VII). RolNo represents an 
experimental event (numerated 0…173), which is related to the corresponding working regime 
characterized using technical parameters such as load and speed.  

In Regimes I (events 0–21) and II (events 22–43), the engine load is changed (30, 60, 90, and 
120 Nm) at speeds of 2000 rpm and 2500 rpm, when EGR and SOI are controlled by the engine ECU. 
In Regime III (events 44–67), the engine load is 60 Nm, the engine speed is 2000 rpm, the SOI is fixed, 
and the EGR is set to its default value (0.05, 0.10, 0.15, or 0.20). In Regime IV (events 68–91), the 
engine load is 60 Nm, the engine speed is 2000 rpm, the EGR is fixed at 0.15, and the SOI is set to the 
default values (0, 2, 4, 6, 8, 10, 12, 14, and 16 CAD bTDC). In Regime V (events 92–121), the engine 
load is changed (30, 60, 90, and 120 Nm), the engine speed is 2000 rpm, the EGR is controlled by the 
engine ECU (~0.4, ~0.3, ~0.25, and ~0.15), and the SOI is also controlled by the ECU (~2, ~3, ~4, and 
~5 CAD bTDC). In Regime VI (events 122–137) the engine load is changed (30, 60, 90, and 120 Nm), 
the engine speed is 2500 rpm, the EGR is controlled by the engine ECU, and the SOI is also controlled 
by the ECU. In Regime VII (events 138–173), the engine load is 60 Nm, the engine speed is 2000 rpm, 
the EGR is fixed at 0.20, and the SOI is set to the default values (0, 2, 4, 6, 8, 10, 12, 14, and 16 CAD 
bTDC). 

Tests were conducted using pure diesel (D100), pure biodiesel–hydrotreated vegetable oil 
(HVO100), and a mixture of diesel and HVO (50% by volume each), referred to as HVO50. The 
laboratory investigation focused on the physical and chemical properties of the fuel, with the findings 
detailed in Table 1. 

The specific carbon dioxide emissions (SCO2) have been calculated by taking into account the carbon 
dioxide concentration in the exhaust gas, the mass of the exhaust gas, and the engine power. The specific 
emissions of nitrogen oxides (SNOx) were calculated similarly. Together with the smoke characteristics, 
these parameters best represent the combustion chemistry and environmental parameters of the engine 
when operating on different fuel blends. Braking thermal efficiency (BTE) results are presented to 
evaluate the energy efficiency. 

 
 

3. SIMULATION SETUP 
 

3.1. ANN architecture 
 
ANN architecture and dynamic training mode determine the final performance of ANN and 

following quality of validation/prediction [24]. We implemented an ANN consisting of an input layer, 
a single hidden layer, and an output layer. Fig. 3 represents the ANN schema in the framework of 
VALLUM01 [25].  

A bias was included in the hidden layer to facilitate flexibility. The software package VALLUM01, 
which includes a graphical and user-friendly interface for input, output, and control, was built using the 
JAVA Eclipse framework. A normalization plugin was used to transform any actual value (pink) from 
the specified interval into the (0;1) range. The denormalization plugin works in reverse. The information 
flow progresses from the lower levels to the upper levels. 

For the ANN, two typical classes from [26] were used: Matrix and NeuralNetwork. An S-shaped 
function (a sigmoidal function) was used: 

          (1) ! "! " #$ !# "!! "σ −= +
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Four organizational stages—a) selecting the number of input layers, b) establishing the number of 
hidden layers (single or double), c) adjusting the number of perceptrons in the single hidden layer (in 
this case), and d) requesting the number of output layers—are described in previous works [27, 28] and 
are used in this study without any changes. 

 

 
Fig. 2. Distribution of the output parameter (SCO2) on experimental RolNo. Engine test regimes cover seven stages  
       (I–VII). RolNo represents the experimental event characterized using technical parameters such as load and 
        speed 

Table 1 
Fuel properties 

 
Properties D100 HVO50 HVO100 
Kinematic viscosity at 40 °C, cSt 3.948 3.000 2.959 
Dynamic viscosity, mPa · s 3.271 2.365 2.2617 
Density at 15 °C, g/mL 0.830 0.806 0.780 
Cetane number 50.9 59.9 74.5 
C/H ratio 6.80 6.22 5.60 
Air to fuel ratio (stoichiometric), kg air/1 kg 

fuel 
14.50 14.79 15.10 

Lower heating value (LHV), MJ/kg 42.82 43.21 43.63 
 

3.2. Data collection 
 
We established two input data clusters (refer to Table 2) and three output data clusters (refer to 

Table 3) according to analogous or relevant features for data collection. This framework helps reduce 
random fluctuations in the TNE. The artificial neural network consists of an input layer containing 
12 units (yellow), a solitary hidden layer with M perceptrons (blue), and an output layer including 10 
units (green) - refer to Fig. 3. 

The first input cluster consists of parameters describing the technical conditions (P10, P03, P02, P11, 
P01), and the second input cluster consists of parameters describing burning chemistry parameters (P09, 
P04, P05, P12, P06, P08, P07) (see Table 3). The first output cluster consists of w SNOx (R04). The 
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second output cluster consists of smoke (R00), and brake thermal efficiency (BTE) (R02). The third 
output cluster consists of SCO2 (R06). 

 

 
 
Fig. 3. Schematic diagram of an artificial neural network (ANN) architecture with normalization and  
           denormalization layers. The ANN consists of an input layer with 12 units (yellow), a single hidden layer  
           with 200 perceptrons (blue), and an output layer with 10 units (green). Normalization and denormalization  
           plugins were applied for data conversion and reconversion. The data flow moves from the bottom to the  
           top 

Table 2 
Experimental parameters of diesel engine used for an ANN as the input parameters 

 
Cluster Index Abbr. Parameter Units Interval 

XMIN XMAX 
1 0 P10 The excess air ratio (𝝀) - 1.0 10.0 
1 1 P03 Brake mean effective pressure (BMEP) MPa 0.0 1.2 
1 2 P02 EGR ratio - 0.0 0.5 
1 3 P11 Start of injection (SOI) CA bTDC −3.0 18.0 
2 4 P09 Cetane number - 5.0 85.0 
1 5 P01 Engine speed (n) rpm 800.0 4000.0 
2 6 P04 Volume fraction of HVO100 % 0.0 100.0 
2 7 P05 Volume fraction of D100 % 0.0 100.0 
2 8 P12 C/H ratio - 5.0 7.0 
2 9 P06 Stoichiometric air-to-fuel ratio (𝒍𝟎) 1 kg of air/1 kg 

of fuel 
10.0 20.0 

2 10 P08 Lower heating value (LHV) MJ.kg−1 18.0 60.0 
2 11 P07 Density kg.m−3 600.0 900.0 

 
        Table 3 

Experimental parameters of diesel engine used for ANN as the output parameters 
 

Cluster Index Abbr. Parameter Units Interval 
YMIN YMAX 

1 8 R04 SNOx  g·kWh−1 0.1 20.0 
2 3 R00 Smoke m−1 0.001 100.0 
2 5 R02 Brake thermal 

efficiency (BTE) 
- 0.01 0.5 

3 2 R06 SCO2  g·kWh−1 100.0 2000.0 
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3.3. Simulation routine 

 
Table 4 delineates the methodologies used to train and validate the ANNs. During the validation 

phase, distinct files—0.csv (172 events), 50.csv (174 events), and 100.csv (195 events) – were used in 
the prediction mode while applying the same training model 200-050100.csv. Tables 6–9 represent 
distributions of R06, R04, R00, and R02 parameters on experiment RolNo for different types of fuel 
mixtures (D100, HVO50, HVO100). The selected parameters belong to two groups:  

a) parameters of burning chemistry: R06 as SCO2, R04 as SNOx, both in [g·kWh-1], R00 as smoke, 
in [m-1]; 

b) energetic parameter R02, BTE. 
ANN consists of an input layer, a single hidden layer where the number of perceptrons M = 200 

(blue), and an output layer (see Fig. 3). VALLUM01 simulates the learning process by adjusting the 
weights of the artificial synapses via backpropagation. Table 4 depicts the procedure of training and 
validating ANNs. 

The nomenclature of files was constructed according to the type of fuel mixture. 0.csv is related to 
the D100, 50.csv is related to the HVO50 (containing 50% HVO supplement), and 100.csv is related to 
the HVO100 (pure HVO). The training data file was constructed by amalgamating the contents of 0.csv, 
50.csv, and 100.csv into a new file titled 050100.csv, including all entries without any selection criteria. 
The cumulative sum of events in the training file 050100.csv was 541 (172+174+195). The training 
procedure was conducted over 160,000,010 epochs using an artificial neural network with a solitary 
hidden layer including 200 perceptrons, exclusive to training project T0. A training stamp in the form 
of file 200-050100.csv (M=200, contains 0.csv, 50.csv, 100.csv) was obtained for validation purposes. 
Figure 4 depicts the variation of TNE2 in relation to the number of epochs, demonstrating the 
advancement of the ANN training process. 

 
Table 4 

The training and validation of the ANNs include an input layer with 12 units, an output layer with 10 
units, a hidden layer with M perceptrons, and a learning rate of 0.01 

 
Project One Hidden 

Layer 
Training Validation 

Name M Routine File Events Epochs TNE2 File Events 
T0 200 T0 200-050100.csv 541 160,000,010 Fig. 4   
T0 200 200-050100.csv 0.csv 172 
T50 200 200-050100.csv 50.csv 174 
T100 200 200-050100.csv 100.csv 195 

 

 
Fig. 4. TNE2 dependence on epochs number. Evolution of the ANN training. Number of epochs: 160,000,010.   
            Number of training events: 541. Number of perceptrons in the single hidden layer: M=200 
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4. RESULTS 

 
Table 5 depicts a comparative examination of the specific CO2 emission (SCO2) of diesel engines 

using three distinct fuel mixtures: D100, HVO50, and HVO100. The data are divided into two main 
components for each kind of fuel: the distribution of actual values and the distribution of anticipated 
values generated by an ANN model. Every row represents a distinct fuel combination. The scatter plots 
on the left-hand side of each row show the trend or distribution of SCO2 emissions over different 
experimental runs (referred to as "RoINo"), with red dotted lines representing the trend or distribution. 
These scatter plots display peaks and troughs, which suggest fluctuations in emission rates caused by 
variations in operating circumstances or engine performance measures at various test points. The D100 
exhibits changing amounts of SCO2 emissions with many distinct peaks, indicating a significant degree 
of variability in emissions during the test cycles. The user's text is "HVO50". Like D100, the SCO2 
emissions exhibit considerable fluctuation, but the general magnitude of the peaks is considerably 
mitigated, indicating a potential decrease in emission levels attributable to the presence of HVO. The 
user has entered the text "HVO100." The fluctuation is present. However, the peaks are much reduced 
in comparison to D100 and HVO50, suggesting that pure HVO has the potential to generate less 
emissions. 

The scatter plots on the right side of each row show the projected values of SCO2 emissions compared 
to the actual values for each kind of fuel. These charts are essential for assessing the accuracy of the 
ANN predictions in comparison to the actual measured values. Each fuel type exhibits a set of graphs 
where data points are closely grouped around a line, indicating a significant connection between the 
anticipated and experimental values. This suggests that the ANN model effectively estimates SCO2 
emissions for various kinds of fuel and operating circumstances. The density of the point clusters along 
the 45-degree line (representing the optimal prediction line) differs somewhat across the different fuel 
types. The D100 points exhibit a strong alignment with the line, suggesting a high level of prediction 
accuracy. The HVO50 and HVO100 exhibit a strong correlation, while there are some modest variances 
indicating minor inaccuracies in prediction, especially at higher emission levels.  

The graphical data indicates that the use of HVO, whether in the form of a mix or its pure form, in 
diesel engines may effectively decrease SCO2 emissions, as seen in the emission patterns derived from 
the experiments. Moreover, the ANN model offers dependable forecasts of emissions, as seen by the 
robust correlation in the predictive graphs. This makes it a valuable tool for predicting emissions in 
various operating situations and with different fuel types. The efficacy of the model also underscores its 
potential usefulness in optimizing engine efficiency and ensuring adherence to environmental rules. 

Table 6 presents an ongoing investigation of emissions from diesel engines using various fuel 
combinations. The analysis specifically focuses on a parameter labeled "R04," which represents the 
specific NOx emissions (SNOx). Similar to the previous diagram, the study is divided between 
distributions of actual values and distributions of forecasted values using ANNs for three fuel types: 
D100, HVO50, and HVO100.  

D100 has a discernible pattern of emissions characterized by many prominent peaks of SNOx 
emissions. This pattern may suggest certain operating conditions in which SNOx levels are elevated. The 
variations are significant and exhibit elevated peak values. The user's text is "HVO50." Like D100, the 
pattern exhibits distinct peaks but with significantly lower intensity than pure diesel. This indicates that 
the addition of HVO assists in mitigating SNOx emissions. HVO100 exhibits a substantial decrease in 
both the frequency and amplitude of peaks. The occurrence of peaks is greatly reduced in pure HVO 
compared to D100 and HVO50, suggesting a large decrease in SNOx. The observed trends indicate that 
higher levels of HVO concentration in the fuel combination result in decreased SNOx, which is consistent 
with the anticipated advantages of using cleaner and sustainable fuel sources. 

The graphs located on the right side of each row represent specific fuel types and display scatter 
graphs comparing projected and experimental results for SNOx emissions. Each figure has a linear 
regression line, which may represent a linear regression fit, illustrating the relationship between the 
expected and experimental values. The graphs indicate that the points are typically closely aligned along 
the line for all fuel types, indicating that the artificial neural networks (ANNs) can reliably forecast 
SNOx emissions under various scenarios. 
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Concerning the forecast discrepancies of D100 and HVO50, the scatter plots demonstrate a strong 
correlation along the line, with a few outlier points that vary from the expected trend, particularly at 
higher emission levels. The user’s text is “HVO100." The forecast seems to be somewhat more dispersed 
in comparison to D100 and HVO50, perhaps indicating difficulties in estimating emissions for a fuel 
variant that deviates greatly from standard diesel fuels. 

Table 5 
Distributions of the R06 parameter (SCO2, g·kWh-1) on experiment RolNo for different types of fuel 

mixtures (D100, HVO50, HVO100) 
 

Fuel Parameter Distributions of predicted values 
D100 

  
HVO50 

  
HVO100 

  
 
The graphical representations demonstrate that the use of HVO leads to a significant decrease in 

smoke emissions in diesel engines, particularly when pure HVO mixes are used. The ANN models 
exhibit a notable level of prediction precision, efficiently establishing the correlation between 
operational circumstances and emission levels. The results not only emphasize the positive impact of 
HVO on the environment but also demonstrate the potential of ANN models to accurately forecast 
engine emissions. This capability is essential for meeting regulatory requirements and optimizing engine 
design. 

Table 7 displays statistics concerning the emissions of smoke from diesel engines while utilizing 
various fuel mixtures (D100, HVO50, and HVO100). The content is divided into two main parts for 
each kind of fuel: the distribution of actual values and the distribution of anticipated values using ANNs.  

For experimental value distributions, the user's text is "D100," and the data show pronounced peaks 
in smoke emissions, suggesting substantial variability and instances of elevated emission levels. The 
distribution has many distinct peaks, which might indicate fluctuations in engine efficiency or variations 
in testing circumstances. The user's text is "HVO50." The figure demonstrates a significant drop in peak 
height when compared to D100, indicating that the presence of HVO leads to a reduction in emissions 
of smoke. The number of peaks is reduced, and their prominence is diminished. The HVO100 fuel has 
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less prominent peaks than the other two fuels, suggesting that it produces the fewest emissions related 
to smoke. The general trend is less pronounced, indicating that pure HVO significantly decreases the 
variability of emissions and the levels of peak emissions. 

Table 6 
Distributions of the R04 parameter (SNOx, g·kWh-1) on experiment RolNo for different types of fuel 

mixtures (D100, HVO50, HVO100) 
 

Fuel Parameter Distributions of predicted values 
D100 

  
HVO50 

  
HVO100 

  
 
Graphs for forecasting the precision of artificial neural network models are located on the right side 

of the scatter graphs and compare the projected and experimental results for smoke emissions for each 
fuel type. The correlation analysis for each plot incorporates an oval shape that indicates the distribution 
and relationship of the data points to show the precision and consistency of the artificial neural networks' 
predictions. The D100 model has a robust linear correlation in its predictions, as seen by the dense 
clustering of data points along the trend line. However, slight dispersion may be noticed at higher 
emission levels. HVO50 has a strong prediction accuracy, as the majority of data points closely adhere 
to the trend line. The spread is somewhat wide, suggesting a slightly greater range of variability in 
forecast accuracy. For HVO100, the predictions reported here exhibit the highest degree of variation 
across the three fuel types, suggesting that the model's predictive accuracy may be significantly worse 
for pure HVO. This might be attributed to the narrower range of emission levels or distinct behavioral 
patterns that are less prevalent in the training data. 

The investigation demonstrates a correlation between higher levels of HVO in diesel fuel and a 
substantial decrease in smoke emissions from engines. The decrease is seen in both the empirical data 
and the artificial neural network forecasts. The ANN models exhibit strong performance in forecasting 
smoke emissions, particularly with conventional diesel and HVO mixtures. However, they show 
somewhat higher variability when applied to pure HVO, indicating the need for further model tuning or 
more representative training data. This information is vital for promoting the use of HVO as a greener 
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alternative to conventional diesel backed by strong predictive models that guarantee compliance and 
enhance engine efficiency. 

The distribution of brake thermal efficiency (BTE) for diesel engines running with various fuel 
combinations, namely D100, HVO50, and HVO100, is shown in Table 8. Additionally, the table 
includes the predictions produced using ANNs for these parameters.  

For comparisons among different fuel types, the user's text is "D100." The figure illustrates that the 
BTE ranges mostly from roughly 0.26 to 0.34. The distribution has many peaks, indicating the variability 
in efficiency across various operating points or engine settings. The user's text is "HVO50." Like D100, 
BTE has a broad range but demonstrates significantly more consistency across several test points, 
showing less abrupt declines compared to pure diesel. The user's text is "HVO100." The efficiency 
distribution closely resembles that seen with HVO50, with the majority of peaks occurring at 
comparable values. Nevertheless, it seems to have a little more consistent efficiency profile over its 
working range, suggesting superior performance stability.  

These patterns suggest that including HVO, whether as a mixture or in its pure form, tends to stabilize 
and perhaps improve the efficiency of the engine under different operating situations. Graphs forecasting 
the precision of ANN models are located on the right side of the scatter plots and show the projected 
BTE values versus the experimentally measured values for each fuel type. The linear trend lines in each 
plot demonstrate the predictive pattern and signify the level of agreement between the anticipated and 
actual values. There is a clear direct relationship between the projected and actual values for each kind 
of fuel. The points exhibit a high degree of clustering along the line, which suggests that the ANNs have 
a high level of predicting accuracy. The D100, HVO50, and HVO100 samples have a comparable degree 
of correlation, indicating that the ANNs perform the same across various fuel composition conditions. 
The data points consistently form compact clusters along the linear trend lines, which suggests that the 
forecasts are accurate.  

The statistics indicate that including HVO in diesel fuel either preserves or improves the thermal 
efficiency of engines. Furthermore, the ANN models used for forecasting BTE demonstrate 
effectiveness across various levels of HVO concentrations, exhibiting a high degree of accuracy in their 
forecasts. The dependability of predictive modeling is essential for optimizing engine performance and 
obtaining efficiency benefits in practical applications. The results emphasize the potential advantages 
of using higher HVO mixes, not just for environmental benefits, but also for improved engine 
performance. 

Table 7 
Distributions of the R00 parameter (smoke, m-1) on experiment RolNo for different types of fuel 

mixtures (D100, HVO50, HVO100) 
 

Fuel Parameter Distributions of predicted values 
D100 
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HVO50 

  
HVO10

0 

  
 

Table 8 
Distributions of R02 parameter (BTE) on experiment RolNo for different types of fuel mixtures 

(D100, HVO50, HVO100) 
 

Fuel Parameter Distributions of predicted values 
D100 

  
HVO50 

  
HVO10

0 
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5. CONCLUSIONS 

 
1. The quality of ANN prognosis is very high for several types of pollutants (SCO2, SNOx, and smoke) 

in diesel outcomes when diesel engine works in a wide range of regimes using different commercial 
fuels: D100 (pure diesel), HVO50 (containing 50% HVO supplement), HVO100 (pure HVO). 

2. The relationship for chemical parameters (SCO2, SNOx, and smoke) related to diesel working regime 
and fuel type (D100, HVO50, HVO100) is satisfactory. 

3. The relationship for the energetic parameter (BTE) related to the diesel working regime and fuel type 
(D100, HVO50, HVO100) is excellent. 

4. For some data (input layer, number of units L = 12, output layer, number of units N = 4, number of 
events for training – 541), the empirically selected parameters of the ANN architecture and training 
regime are sufficient: single-hidden layer, number of perceptrons M = 200, training regime using 
160,000,010 epochs. 

5. A prognosis of outcome parameters for fuels containing HVO is available, precision is high, and 
deviations are less than 10%.  
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