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Summary. Standardized driving cycles are widely used to simulate real-world vehicle 

operating conditions. They are used for estimating vehicle ranges, evaluating emissions, 
and designing powertrain characteristics. Recently, due to the intensive electrification of 
urban public transport fleets, estimating electric energy consumption has gained significant 
importance. This process requires up-to-date, validated driving cycles developed from real-
world operating condition measurements. This paper presents an original method for 
synthesizing the driving cycle based on a stochastic approach using Bayesian inference. It 
first determines probability distributions of vehicle speed for the entire line. Next, all trips 
for the line are divided into segments of uninterrupted movement. A probability 
distribution of speed is also constructed for each of these segments. Then, quality fit 
indicators are calculated for each segment. Segments that support the hypothesis of the 
total distribution with maximum likelihood are then selected using Bayesian inference. A 
driving cycle for the selected line is synthesized by combining several segments with the 
highest degree of fit. The condition for applying the method is having a large dataset of 
measurements obtained during actual trips. The method can be effectively implemented 
computationally, ensuring high accuracy in reflecting the driving conditions in a selected 
area. The method has low computational requirements and a high capacity to adapt to 
changing operational conditions. This paper presents the results of applying this method to 
three bus lines in Warsaw and uses publicly available traffic data. The proposed method 
can be used for various applications, including estimating energy consumption for route 
travel, assessing the impact of traffic management changes on driving smoothness, and 
determining the load on electric bus engines and batteries. 

 
 

1. INTRODUCTION 
 

A driving cycle represents the typical driving pattern of a vehicle under specified conditions [1] and 
can be defined as a function of vehicle speed over time. Driving cycles simulate real-world vehicle 
operating conditions for diesel and electric vehicles [2]. They are used to estimate vehicle range under 
given conditions, fuel or electric energy consumption over a route, air pollution estimation, calculation 
of vehicle powertrain characteristics for matching to operating conditions, etc. Standardized driving 
cycles are developed by research institutions in various countries and may consider the geographical 
features of the location, climatic conditions, regional regulations, and types of vehicles (passenger cars, 
trucks, public transport). They may also pertain to urban, rural, or mixed traffic conditions. However, 
they do not always reflect specific real-world conditions [3]. 
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Driving cycles can be constructed as a combination of motion phases: acceleration, cruising at a 
constant speed, deceleration, and stopping. A commonly used example is the New European Driving 
Cycle [4]. In practice, however, phase transitions occur much more rapidly than assumed in the cycle, 
and accelerations and decelerations in congested urban traffic are more aggressive. Therefore, in recent 
years, the New European Driving Cycle has been largely replaced by the Worldwide Harmonized Light 
Vehicles Test Cycle [5]. 

In the past decade, significant developments have occurred in electric-powered transportation, 
including in the realm of urban public transport, where a common trend is to replace diesel buses with 
their electric counterparts [6-8]. Zero-emission public transport is part of the EU's sustainable 
development strategy. The "Electromobility and Alternative Fuels Act" in Poland supports public 
transport vehicle electrification [9]. The first electric buses appeared on the streets of Warsaw in 2017. 

Electric vehicles require the development of actual driving cycles due to the specific dynamics of 
electric bus propulsion. On the other hand, it is necessary to consider indirect factors such as the ability 
of the charging infrastructure to replenish energy consumed, as well as timetables setting time conditions 
[10]. Developing current driving cycles is an important research topic because accurately determining 
the driving cycle reduces electricity consumption and provides recommendations for drivers to follow 
[11]. Predicting energy consumption on a designated route facilitates better charger placement and 
power selection. Estimating energy flows in an electric vehicle's power system will also allow the 
vehicle's battery life to be assessed over extended use. On the other hand, not considering driving cycles 
that reflect current traffic conditions may result in operational problems [12]. 

Methods for constructing driving cycles employ advanced mathematical tools, including statistics, 
probability theory, and Markov chains, combined with computer modeling and neural networks. The 
approach presented in [13] is based on calculating a set of driving characteristics using a particular 
measuring device mounted on the vehicle. The trips were divided into segments according to the idle 
criterion. The need to equip the car with such a device limits the application of this method. In [14], a 
probabilistic approach focused on the multidimensionality of driving cycles, considering, for example, 
different weather or road conditions. Markov chains define the conditions and probabilities of 
transitioning to the next driving stage. Paper [15] introduced constraints to the evolution of Markov 
chains, which significantly accelerated, generating a representative driving cycle and applying self-
adaptation mechanisms. Article [16] presented a prediction method based on a recursive, self-learning 
Markov chain. This further reduced the calculation time of the driving cycle by adjusting prediction 
parameters to achieve optimal performance. 

Work [17] focused on the statistical analysis of the dependencies of driving cycle characteristics, 
including transition probabilities in the Markov matrix, based on travel times. In this case, the cycle 
model was limited to speed and acceleration. Paper [18], like this article, considered the specifics of 
urban bus driving cycles. It focused on analyzing the characteristics of driving cycles depending on the 
route features, using linear regression in the driving cycle prediction model. The macroscopic approach 
involves constructing a driving cycle based on route profile information obtained, for example, from 
geographic information systems. Article [19] applied the Monte Carlo method and the Markov chain to 
filter candidate driving cycles to select the most representative one. Among the remaining works, this 
article is characterized by an extensive set of measurement data collected over two years and a focus on 
electric vehicles. The microscopic approach relies on measurement data collected during trips on 
designated routes. 

The method proposed in this paper for constructing a bus driving cycle uses probabilistic methods. 
The method uses a standard vehicle motion recorder, making it simple to collect a large amount of data 
from many vehicles simultaneously, as it does not require other specialized measuring devices. The 
novelty of the method lies in its application of Bayesian inference [20], [21], which, when combined 
with a large set of accurate measurement data, allows for the efficient implementation of the method in 
a computational form. This ensures high accuracy when reflecting actual traffic conditions for the entire 
selected area, as well as low computational requirements and a high capacity for adaptation to changing 
traffic conditions by incorporating real-time measurements. 
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2. METHOD FOR DETERMINING A REPRESENTATIVE DRIVING CYCLE 

 
Let the non-empty finite set 𝐿 = {𝐿!, 𝐿", … 𝐿#} represent all the analyzed public transport lines 

serviced by buses, selected for constructing the representative driving cycle. Each line 𝐿$ ∈ {	𝐿	} is 
represented as a finite directed acyclic graph 𝑆 = {𝑆!, 𝑆", … 𝑆%}, where each node 𝑆& represents a stop on 
the route and can be represented as an ordered pair (𝑛𝑎𝑚𝑒, 𝑛𝑒𝑥𝑡), where 𝑛𝑎𝑚𝑒 is the name of the stop, 
and 𝑛𝑒𝑥𝑡 is a pointer to the next stop. Stop 𝑆! is the beginning of the route, stop 𝑆% is the end of the 
route, and ∀𝑚 ∈ [1. . 𝑘 − 1] the conditions 𝑆'(! = 𝑆'. 𝑛𝑒𝑥𝑡 and 𝑆% . 𝑛𝑒𝑥𝑡 = 𝑛𝑢𝑙𝑙 are satisfied. 

The segment of the route 𝐿$ between two adjacent stops 𝑆' and 𝑆'(! (1 ≤ 𝑚 ≤ 𝑘 − 1) is denoted 
as 𝐷' and represented by location functions dependent on time – specifically, 𝐷'(𝑡) =
{𝑙𝑎𝑡(𝑡), 𝑙𝑜𝑛(𝑡)}, where 𝑙𝑎𝑡(𝑡) is latitude and 𝑙𝑜𝑛(𝑡) is longitude. The stops may belong to more than 
one route *i.e., 𝐿) ∩ 𝐿* ≥ ∅ for 1 ≤ 𝑎 < 𝑏 ≤ 𝑛). All route segments form the set 𝐷 = {	𝐷!, 𝐷", …𝐷+}, 
where segments may be common to two or more routes (i.e., 𝐷, ∩ 𝐷- ≥ ∅ for 1 ≤ 𝑐 < 𝑑 ≤ 𝑝). 

Speed is a discrete function, where each value 𝑣$ = 𝑣(𝑡$) represents the current speed of the vehicle. 
Measurements of the vehicle’s geographic position at times 𝑡$ ∈ {	𝑡!, 𝑡", … 𝑡.} are taken at equal time 
intervals 𝛥𝑡, so 𝑡/ = 𝑡! + (𝑥 − 1)∆𝑡.  

Fig. 1 shows the speed profile of one of the selected segments between stops. 

 
Fig. 1. Speed profile of one of the segments between stops 

 
The drive of a segment can be characterized probabilistically, for example, by providing the 

probability distribution of speeds or by defining a stochastic matrix of conditional probabilities. In this 
case, the probability 𝑝% that the speed 𝑣 will fall within the interval (𝑣%; 𝑣%(!) with an allowable error 
∆𝑝% is determined based on the relative travel time: 

𝑝% =
0!
0"
, ∆𝑝% = K+!(!2+!)0"

                                                       (1) 

where 𝑡% is the time spent driving at a speed within the specified segment, and 𝑡# is the total travel time 
for the segment. 

Fig. 2 shows an example of the speed probability distribution for a segment. The classification was 
conducted as follows: stop – no change in vehicle location for at least three seconds; speed class – 
discretization of speed in increments of 5 km/h within the 0–80 km/h range. Additionally, stops are 
distinguished between those occurring at designated stops and those occurring along the route. 

Trips can also be characterized in terms of driving stages. Here, the phases can be distinguished as 
follows: 0 – stop, 1 – cruising at constant speed, 2 – acceleration, 3 – deceleration. The probability 
distribution associated with the analyzed segment is shown in Fig. 3. 

The original method of synthesizing a representative driving cycle is intended to select a non-empty 
set of road segments whose chosen probabilistic characteristics best reflect the exact features obtained 
for all trips. The number of segments constituting the representative driving cycle can be selected 
depending on the requirements (e.g., the trip duration). 

The practical implementation of the method requires an analysis of multiple journeys of road 
segments 𝐷$ ∈ {	𝐷	} belonging to different bus lines 𝐿$ 	 ∈ {	𝐿	}. For this purpose, a two-dimensional 
matrix 𝑇 was created. The matrix rows specify ordinal numbers of road segment indices, while the 
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matrix columns define categories of speed classes. A sample matrix fragment is shown in Table 1, where 
the classes are denoted as follows: 0 – stops, 5–40 speed classes in increments of 5 km/h (since speed 
classes 45, 50, ..., 80 are omitted in the table, the value of 𝑇$ may be greater than the sum of the rows of 
the table), 𝐿𝑝 – ordinal number, 𝑘 – class, and 𝑇$ – total travel time for segment number 𝑖. 

 
Fig. 2. Probability distribution of speeds on the selected route segment. The classes are numbered as follows: 1 – 

stops at bus stops, 2 – stops outside bus stops, and 3 – speed increments in steps of 5 km/h 

 
Fig. 3. The probability distribution of driving stages associated with the speed profile 
 

Table 1 
Matrix of segment travel times (fragment) 

 
 Lp/k 0 5 10 15 20 25 30 35 40 Ti   

1 11 10 30 2 15 16 0 11 0 132 

2 17 0 0 11 0 0 0 7 13 69 

3 1 13 0 0 46 0 8 0 32 167 

4 59 9 21 22 0 0 12 0 0 123 

5 57 85 29 46 0 0 34 0 12 263 

6 44 22 0 11 1 14 10 0 10 112 

7 106 25 29 43 14 53 11 10 0 395 

.. … … … … … … … … … … 
 
By summing the elements of matrix 𝑇 along rows 𝑖, we obtain the travel time distributions for 

segments as: 
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𝑇$ = ∑ (𝜏$)&%
&4!                                                               (2) 

where: 𝜏$& is the travel time at speed belonging to class 𝑗 on segment 𝑖 (an element of the matrix shown 
in the table), and 𝑇$ is the travel time for segment	𝑖. 

By summing the elements of matrix 𝑇 along columns 𝑗, we obtain the speed count distributions. 
Dividing by the total travel time allows us to calculate the total probability distribution as: 

𝑃R𝑉&T 	=
∑ 67#8$
"
$%&

∑ 9$"
$%&

                                                             (3) 

The resulting total probability distribution from all considered segments is shown in Fig. 4. Due to 
the large size of the analyzed data (the matrix describes ~20,000 segments), the percentage error of the 
probabilities is at most 2%. Fig. 5 illustrates the distributions of the following movement stages: stop, 
cruising at constant speed, acceleration, and deceleration. 

Conditional probability distributions of achieving speed on selected segments 
𝑃	(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	|	𝑠𝑒𝑔𝑚𝑒𝑛𝑡) are obtained by dividing the element of the matrix 𝜏$& by the travel time of the 
segment 𝑇$: 

𝑃(𝑉|𝑖)& 	=
7$#
9$
		 , 𝑗 = 1,… , 𝑘                                                 (4) 

where: 𝑃(𝑉|𝑖)& is the probability of achieving speed in class 𝑗 on segment 𝑖. Based on this, the 
conditional probability distribution 𝑃(𝑠𝑒𝑔𝑚𝑒𝑛𝑡	|	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) is determined by Bayes' theorem of 
conditional probability: 

𝑃(𝑖|𝑉)& = 𝑃(𝑉|𝑖)& ∗ 𝜔&                                                     (5) 
where: 𝑃(𝑖|𝑉)& is the probability that a trip took place on segment 𝑖 if movement occurred at speed class 
j, and ωi is the weight of probability. 

 
Fig. 4. The overall probability distribution of speed for a selected route (112) 

 
Fig. 5. The driving stages for the selected route (112) 
 

In this case, the weight of probability determines the relative travel time of the segment: 
𝜔$ =

9$
∑ 9$"
$%&

                                                                     (6) 
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This principle can be extended to the total speed probability: 
𝑃(𝑉) = 𝑃(𝑉|𝑗) ∙ 𝑂𝑅2!                                                         (7) 

However, currently specified probabilities will take on new meanings: OR – the odds ratio that there 
is a higher chance of the event occurring in the study group than in the reference group, 𝑃(𝑉|𝑗) – a priori 
hypothesis that the total probability distribution can be described by the distribution 
𝑃(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	|	𝑠𝑒𝑔𝑚𝑒𝑛𝑡), and 𝑃(𝑉) – posterior distribution of total probability. This is a case in which 
Bayesian inference is applied based on credibility. The OR is the weight of Bayesian inference. A value 
of OR≈1 means that the chance of an event occurring in both groups is similar. If OR<1, there is a lower 
chance of the event occurring in the study group than in the reference group, whereas the opposite pattern 
is indicated by OR>1. Based on the last dependency: 

𝑂𝑅 = :(;|&)
:(;)

; 				𝛥𝑂𝑅 = ^_:(;|&)∙∆:(;)
6:(;)8'

`
"
+ a∆:(;|&)

:(;)
b
"
                                    (8) 

In this case, OR is the total speed probability distribution ratio to the distributions on individual 
segments. Table 2 shows the distribution of ORs describing the degree of support for the hypothesis 
𝑃(𝑉) using the data 𝑃(𝑉|𝑗 = 7…14) from Table 1. 

A similar relationship can be used to determine a group of speed distributions on several – for 
example, three or four – different road segments, representing the total probability distributions most 
credibly. In this case, the OR distribution can be determined by the formula: 

𝑃(𝑉|𝑖)&4.?@ =
∑ (7$)##%()*
∑ (9$)##%()*

; 						(𝑂𝑅$)&4.?@ =
:(;|$)#%()*

:(;$)
                                  (9) 

 
Table 2 

The OR distribution based on data from Table 1 
 

 Lp/k 0 5 10 15 20 25 30 35 40 

1 0.80 0.67 2.36 0.19 1.58 1.85 0 1.52 0 

2 1.54 0 0 1.99 0 0 0 1.86 3.85 

3 0.06 0.69 0 0 3.82 0 0.84 0 3.92 

4 3.30 0.65 1.77 2.24 0 0 1.72 0 0 

5 1.32 2.86 1.14 2.19 0 0 2.28 0 0.93 

6 3.10 1.74 0 1.23 0.12 1.91 1.57 0 1.83 

7 1.63 0.56 0.76 1.36 0.49 2.05 0.49 0.46 0 

… … … … … … … …. … … 
 
For example, to calculate the OR for segments indexed 1, 3, 5, and 7 in the speed class of 10 km/h 

from Table 2, we determine the following: (𝜏!A)! = 30; (𝜏!A)B = 0; (𝜏!A)C = 29; (𝜏!A)D = 29. Thus, 
∑ (𝜏$)&&4.?@ = 88. Similarly, ∑ (𝑇$)&&4.?@ =132+167+263+395=957. Therefore, 𝑃(𝑉|𝑖 =
10)&4!,B,C,D = 0.0920. Since 𝑃(𝑉$4!A) = 0.0964, the OR based on the data from the selected four 
segments in the 10 km/h speed class is 0.953, which supports the hypothesis. The calculated ORs for 
segments in all speed classes are presented in Table 3. 

The objective function should describe the condition that the odds of an event occurring in one group 
are close to the odds of it occurring in the other group. The evaluated condition can be defined as follows: 

𝐹$ = l(𝑂𝑅$)&4.?@ − 1m < 𝛼	                                                        (10) 
where: 𝛼 is the maximum deviation (e.g., α = 0.1), and Fi is a logical function for the checked speed 
classes. The 𝛼 value characterizes the maximum permissible deviation of the OR from 1. In the example, 
the value of 𝛼 = 0.1 was chosen. Increasing 𝛼 enhances the chances of a segment qualifying for cycle 
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representation. If the value of 𝛼 is too small, it can make it difficult to find segments that meet the 
hypothesis of similarity of distributions; if it is too large, it can reduce the accuracy of calculations. 
 

Table 3 
The OR coefficients for fitting the speed distribution of a randomly selected group of road segments 

and the evaluation index function 
 

 k 0 5 10 15 20 25 30 35 40 

OR(1,3,5,7) 0.99 1.21 0.95 1.17 1.06 1.08 0.95 0.39 0.92 

F 1 0 1 0 1 1 1 0 1 

 k 45 50 55 60 65 70 75 80 

OR(1,3,5,7) 1.20 2.96 0.95 1.09 1.16 0 2.22 0 

F 0 0 1 1 0 0 0 0 
 

The quality indicator 𝐹$#-$,)0?. is the sum of the logical values:  
𝐹$#-$,)0?. = ∑𝐹$                                                                (11) 

In the example presented above, its value is 8. The largest value of 𝐹$#-$,)0?. is the best, as it shows 
that the corresponding segment best reflects the entire route in all speed intervals. The proposed method 
uses 𝐹$#-$,)0?. to find segments that best represent driving cycles. If the calculations result in more 
groups being assessed identically, the quality of fitting the group can be further distinguished by 
calculating the sums of odds for individual speed classes. 

 
 

3. ACQUIRING DATA FOR ANALYSIS 
 
Public transport buses in Warsaw are equipped with motion recorders. These recorders save various 

vehicle movement characteristics (current vehicle speed, the geocoordinates of the vehicle, and the local 
time of the vehicle), measured using sensors. Measurement data is supplemented with course description 
data: the number of the serviced public transportation line, vehicle registration number, and the shifts of 
the drivers conducting the route. A data package from each bus is sent to a remote server via a modem 
at specified time intervals (every 10 seconds). The format of the data frame is shown in Table 4. 

The Municipal Transport Authority information system (Fig. 6) contains vehicles and schedules 
databases. Vehicles record their driving parameters and send them to the server as a data package using 
the format shown in Table 4. Timetables are stored in the Schedules database. A registered user (or 
application) can access both databases free of charge via the Web Server using the application 
programming interface methods. The default format for data exchange is JavaScript Object Notation. 
A computer application was developed to analyze data from public transport vehicle journeys by 
collecting cyclical traffic data and storing it in the local Dataset. In this way, a journey database was 
created over two years. The data was then filtered to select journeys made on the indicated routes at a 
specific time of year and at particular times. Next, the data was analyzed using the MATLAB software 
environment. 

The data obtained from the carrier's programming interface reflects the dynamics of the vehicle 
traffic process. Due to random occurrences, such as traffic jams, breakdowns, weather conditions, and 
route changes, these data may only partially accurately reflect the traffic process. Therefore, the 
measurement data was filtered according to the prevailing traffic distributions to construct a 
representative driving cycle. For each analyzed urban transport route, the driving schedules in effect on 
the day the measurement data was obtained were retrieved. The schedule data for each urban transport 
line included the names of the stops, their sequence, scheduled departure times from the stops, and the 
route length. The filtering process aimed to exclude atypical journeys (e.g., incomplete trips, significant 
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service delays, skipped stops due to detours) whose inclusion in the standardized cycle could have 
affected their quality. The schedule data was obtained from the carrier's network server. 

Table 4 
The format of the data frame 

 
Route Vehicle CrewNo Latitude  Longitude Speed, [km/h] Time 
523 N12345 4 52.24015 20.93415 35 2024-01-15 12:18:27 
… … … … … … … 

 
Fig. 6. The architecture of the information system used for collecting vehicle traffic data 
 

The method for determining a representative urban cycle was presented using measurement data 
collected for three selected urban transport routes (Fig. 7). The routes were chosen to represent different 
districts of the city, including sections of highways, residential areas, bridges, streets with designated 
lanes for urban transport, and sections passing through the historical places of the Old Town, among 
others. Table 5 displays the essential characteristics of the selected routes. 

The representative cycles were constructed as follows. First, the vehicle numbers servicing each route 
were selected. Then, each vehicle's trip from the initial to the final stop was extracted in the analyzed 
time interval. Each trip was then verified against the current schedules and discarded if its association 
with the line could not be determined. Complete trips were divided into segments based on bus station 
stops, resulting in uninterrupted driving segments. Each segment was characterized by specific features 
(distance, travel time, average speed, maximum speed, etc.). Next, speed intervals (groups) of 5 km/h 
were established, for which probability distributions of speed occurrence by group were constructed. 
Similarly to the segment data, speed probability distributions were built for the entire route. Then, using 
Bayesian inference, hypotheses were tested to match individual segments' speed distributions to 
the whole route's speed distributions. A specific number of candidate segments were identified based on 
the ranking of segments according to the selected objective function, whose combination formed a 
representative driving cycle for the selected area. 

 
 

4. CALCULATION RESULTS 
 
The first set of calculations determined the total probability distributions of speeds and driving stages 

for lines 112, 180, and 523. The results presented in Figs. 4 and 5 were based on calculations for line 
112. We will show the results of identical calculations for the remaining lines. The speed distributions 
and stage probabilities for line 180 are shown in Figs. 8 and 9, respectively. 

The speed distributions and driving stages for line 523 are shown in Figs. 10 and 11. 
The presented total probability distributions show minimal differences. In the second set of 

calculations, the speed probability distributions were determined for groups of four randomly selected 
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segments, and the ORs were calculated. In the next step, quality fit indicators were calculated. Based on 
these calculations, the data (in the form of sequences of selected four segments) that most strongly 
supported the hypothesis of the total distribution (with maximum reliability) were identified. The results 
are presented in the following figures. 

 

 
Fig. 7. Selected public transportation routes (source: [23]) 

Table 5 
Essential characteristics of selected routes for analysis 

 
Line 112 

(regular line) 
180 

(regular, tourist line) 
523 

(express line) 
Terminal stops  Karolin – 

CH Marki 
CH 

Marki - 
Karolin 

Chomiczówka 
- Wilanów 

Wilanów - 
Chomiczówka 

Stare 
Bemowo – 

PKP 
Olszynka 

Grochowska 

PKP 
Olszynka 

Grochowska 
- Stare 

Bemowo 
Route length, [km] 23.76 25.78 19.60 19.80 20.67 20.45 
Number of stops 45 48 42 45 35 33 
Average number of 
trips per day 

176 176 254 

Average duraFon 
of route operaFon 
(per day), [h] 

17:34 19:26 17:18 
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Fig. 8. Speed distributions for line 180 
 

 
Fig. 9. Stage probability distributions for line 180 

 
Fig. 10. Speed distributions for line 523 
 

 
Fig. 11. Stage probability distributions for line 523 
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Fig. 12 shows the speed profiles of four segments of line 112, for which the quality evaluation 
indicator 𝐹$#-$,)0?. = 12. Fig. 13 shows the histogram of the speed distribution for these segments. 

 

 
Fig. 12. Speed profiles of four segments of line 112 providing a representative driving cycle 
 

 
Fig. 13. Histogram of the speed distribution of four segments of line 112 
 

Fig. 14 shows the speed profiles of four segments of line 523, for which the quality evaluation 
indicator 𝐹$#-$,)0?. = 13. Fig. 15 shows the histogram of the speed distribution for these segments. 

 

 
Fig. 14. Speed profiles of four segments of line 523 providing a representative driving cycle 
 

The speed profiles shown in Figs. 12 and 14 are representative driving cycles for the selected sample 
routes. The method was demonstrated by randomly selecting four segments for each route whose 
summed quality equation indicator had the greatest significance. The order in which the selected sections 
were combined into a cycle was not important. The cycle length for each line was different. Route 523 
(express) is characterized by longer distances between stops. Therefore, its representative driving cycle 
is longer. The proposed method makes it easy to obtain a cycle of the desired length. It is sufficient for 
each analyzed route to select the number of combined sections accordingly. 
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Fig.15. Histogram of the speed distribution for four segments of line 523 

 
 

5. CONCLUSIONS 
 
This article proposes a method for determining the driving cycles of city buses based on large sets of 

real-world measurement data utilizing Bayesian inference. This method allows a driving cycle of any 
duration (tailored to user needs) to be synthesized. The cycle consists of actual segments of inter-stop 
route sections whose selected probabilistic characteristics best reflect the overall movement on the 
analyzed routes. 

The primary goal of developing the proprietary method was to create a Warsaw driving cycle for 
electric buses. This is primarily related to the intensive electrification of the public transport fleet. An 
analysis of standard driving cycles revealed that, due to their universality, they do not accurately reflect 
specific driving conditions. When the method is combined with an electric vehicle model adapted to the 
route profile [7], it provides a comprehensive solution for selecting the characteristics of an electric 
vehicle to service communication lines in a designated area. Furthermore, considering the approach 
presented in [10], the method serves as one of the pillars in planning the infrastructure for servicing 
electric vehicles at charging stations, including the selection of power and the number of chargers. 

The advantage of this method is its high accuracy in reflecting the actual bus driving cycle. 
Measurement data are collected and updated continuously, allowing the constructed driving cycles to 
be used for traffic condition analysis at any time without the need for repeated complex and time-
consuming calculations. The source data for demonstrating the method was obtained from files recorded 
for three selected bus lines over 30 days. The accumulated data set allowed for the creation of a matrix 
of characteristic travel features comprising a total of approximately 20,000 segments. The obtained data 
volume enabled the determination of speed development probabilities in specific classes with an error 
below 5%. It is also worth noting that the method does not use computationally complex mathematical 
models. The calculations can be performed, for example, on embedded computers placed on the vehicle 
[24], which significantly expands the application of the method and enables the prediction of the cycle 
on IoT-embedded devices [25]. 

The method's limitations include difficulties in its application to a new area without conducting real-
world operational traffic characteristic measurements. Since the method is based on actual data as 
opposed to simulations, it is strongly tied to the characteristics of a specific area. Another issue is that 
sampling periods are not initially constant due to transmission delays. Not all measurement data are 
suitable for analysis due to human handling errors (e.g., turning off the transponder or transmission 
interruptions). Therefore, the development and further practical application of the method should 
include more accurate quality checks of the data incoming to the server by conducting control 
geolocation measurements [26] for selected trips.  

Driving cycles calculated using the proposed method can easily be scaled by adding new segments 
and extending to new routes. Adding markers to the records collected in the database, such as weather 
conditions (temperature, season, road conditions, etc.), will allow for real-time cycle updates. Using 
obtained driving cycles in the operational mode will enable real-time vehicle range estimation on 
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designated routes. Exploring data accumulated in the data warehouse from different periods and years 
in analytical mode will allow the detection of long-term dependencies in cycle characteristics from many 
input parameters. The results of such an analysis can be used in the design of new urban infrastructure, 
such as routes, schedules, and stops. 

Further practical application of the method is planned to assess the impact of restrictions imposed by 
the urban traffic organization on the smoothness of road segment travel [27]. This situation occurs, for 
example, during renovations or reconstruction of communication routes (e.g., the tram to Wilanów and 
the introduction of bus lanes). The method is also planned to be used to determine engine and battery 
loads by representing the developed driving cycles in terms of instantaneous power consumption 
conditions. This will allow for the determination of continuous, hourly, and peak power to predict 
electric energy consumption [28] and the state of battery charge. It will also enable consideration of 
battery aging conditions. 

 In summary, the method – when combined with the simulation models of electric vehicles in public 
transport proposed and approved by the authors, the method for selecting drive system parameters and 
battery characteristics based on route features, and the method for estimating energy consumption for 
the route and its replenishment during stops – provides a comprehensive solution to the problem of 
analyzing the efficiency of electric vehicles in public transport and allows for the planning of its 
development. It should be noted that the proposed method is not limited to the driving cycles of electric 
vehicles and can be applied to vehicles with other propulsion systems. 
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