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THE TRAPEZOIDAL FINITE ELEMENT IN ABSOLUTE COORDINATES 
FOR DYNAMIC MODELING OF AUTOMOTIVE TIRE AND AIR SPRING 
BELLOWS. PART II: VERIFICATION 

 
Summary. The second part of the paper includes numerical tests verifying equations of 

motion of flexible bodies in absolute coordinates with rectangle and isosceles trapezoid 
finite elements. The equations are formulated in the first part of the paper. The 
verification is based on three types of problems: calculation of natural frequencies and 
modes, evaluation of buckling, and computation of large static and dynamic deflections 
of flexible bodies. Tests show good agreement with the theoretical results and the results 
obtained by other authors. 

 
 

1. INTRODUCTION 
 

In the first part of the paper, we derived equations of motion of flexible bodies in absolute nodal 
coordinates [1]. A specific feature of the method used consists of application of the Craig–Bampton 
approach for deriving equations of motion of each of the finite elements in the body model. The 
practical implementation of the developed method in Universal Mechanism software is restricted at 
present by an isosceles trapezoid plate finite element. In this part of the paper, we verify the 
correctness and efficiency of the equations in respect to their use for simulation of uniform thin plates 
and shells, which, in particular, undergo large deflections. 

The most frequently used method for verification of the dynamic equation of flexible bodies 
consists of computation of natural frequencies and modes for some benchmark problems. To verify the 
derived model, in Sect. 2, we consider two numerical tests for a flexible annular plate and a conical 
shell and compare the frequency values with the results obtained by other authors [2-3]. 

The ability of the equations to simulate large flexible deflections of bodies is tested in Sect. 3. 
Static tests with rectangle and annular plates under different distributed loads are compared with the 
known theoretical results as well as with the published analytical and numerical deflection values [4-
6]. The final test corresponds to simulation of large dynamic oscillations of a rectangle plate with an 
attached rigid body; the simulation results are compared with the experimental data published in paper 
[7].  

An example for the computation of a square plate buckling is considered in Sect. 4. 
All computations in this paper are carried out taking into account linear stiffness matrix  of the 

finite element (FE), neglecting the geometric stiffness matrix  and the stiffness matrix of large 
displacement . 
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2. NATURAL FREQUENCIES AND MODES  

 
2.1. Annular plate 

 
Consider an annular plate with free outer and inner edges. The plate geometrical parameters and 

material properties are as follows: inner radius Ri=0.16m, outer radius Ro=0.4m, thickness h =10mm, 
density r =7850kg/m3, Young’s modulus E=2.1·1011N/m2, and Poisson’s ratio n =1/3. 

Convergence of six lower natural frequencies computed according to equations of motion with an 
increase in the number of finite elements is presented in Tab. 1. The total number of finite elements is 
computed as the product of the number of elements in radial and transversal directions . The 
frequencies are compared for two variants of shape functions V1, V2 described in [1]. The last column 
in Tab. 1 presents the values of frequencies computed in paper [2] using the Hamiltonian approach. 
Analysis of the results shows that a good approximation of the lower frequencies can be obtained for a 
relatively small number of finite elements. The second variant V2 of the shape functions yields 
slightly better results than the first variant V1. 

Table 1 
Convergence of lower natural frequencies of an annular plate (Hz) for different FE discretizations 

 
 2´10 3´20 4´30 5´40 Zhou et al. 

[2] V1 V2 V1 V2 V1 V2 V1 V2 

w1 76.48 75.52 73.18 72.36 72.83 71.81 72.79 71.62 71.02 

w2 134.86 137.67 134.19 135.31 134.35 134.93 134.46 134.81 134.00 

w3 204.90 200.90 192.08 190.05 190.13 187.65 189.61 186.72 184.35 

w4 284.99 274.90 276.96 268.08 277.07 267.71 277.76 267.82 267.06 

w5 377.00 369.61 350.99 346.99 345.36 341.13 343.66 338.72 333.17 

w6 507.88 509.73 515.91 495.45 345.36 494.05 511.60 493.79 491.34 

 
The natural modes of free vibrations of the annulus are shown in Fig. 1. 

 

  
w1    w2    w3 

   
w4    w5    w6 

 
Fig. 1. Bending modes of an annular plate for six lower frequencies 
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2.2. Open conical panel 
 
The second test verifies the ability of the element used in modeling shells. The test consists of 

computation of natural frequencies and modes for two conical panels with free edges described in 
paper [3]. The authors of this paper report both numerical and experimental values of frequencies. The 
panel geometrical parameters are shown in Fig. 2. Numerical values of the geometrical parameters and 
material properties for the panels are listed in Tab. 2. 

 

 
Fig. 2. Geometrical parameters of a conical panel 

 
Table 2 

Cone panel parameters 
 

 j, deg R1, m R2, m H, m h, mm E, N/m2 r, kg/m3 n 

Cone 1 130 0.34 0.416 1.137 2 0.7·1011 2700 0.3 

Cone 2 180 0.16 0.66 1.002 2 0.7·1011 2700 0.3 

 
Table 3 

Convergence of lower natural frequencies (Hz) for different FE discretizations, Cone 1 
 

 5´5 10´10 20´20 Bardell et al. [3] 
V1 V2 V1 V2 V1 V2 Computation Experiment 

w1 7.81 7.36 7.75 7.26 7.59 7.07 7.21 7.5 
w2 12.86 12.84 12.66 12.62 12.50 12.46 12.32 12.7 
w3 19.13 18.6 19.11 18.58 19.01 18.45 18.21 18.2 
w4 35.93 35.78 35.53 35.41 35.37 35.23 34.40 35.6 
w5 45.81 44.85 46.05 45.62 45.92 45.45 44.32 46.0 
w6 51.45 49.36 70.08 69.88 69.76 69.47 67.78 59.5 
w7 52.43 50.12 79.62 77.74 78.69 77.32 75.43 70.4 
w8 69.90 65.05 80.36 78.48 79.44 77.96 76.05 73.1 
w9 72.55 67.11 90.97 90.59 90.73 90.25 87.80 90.4 
w10 77.38 68.42 117.55 117.31 116.74 116.56 113.65 N/A 

j 

H 

R1 

R2 
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Ten lower frequencies are computed with an increase in the number of elements  and are 
listed in Tabs. 3, 4 for two variants of shape functions V1, V2. The last two columns show the values 
of frequencies from paper [3]. Natural bending modes for the computed frequencies are shown in 
Fig. 3, 4. Similar to the previous test, a good correlation of the results is obtained. 

 

          
w1                                      w2                                      w3                                      w4                                      w5 

 

         
w6                                      w7                                      w8                                      w9                                      w10 

 
Fig. 3. Bending modes for Cone 1 

 
Table 4 

Convergence of lower natural frequencies (Hz) for different FE discretizations, Cone 2 
 

 5´5 10´10 20´20 Bardell et al. [3] 
V1 V2 V1 V2 V1 V2 Computation Experiment 

w1 4.44 4.40 4.39 4.34 4.37 4.31 4.65 4.5 

w2 9.00 8.52 8.95 8.48 8.86 8.34 8.75 8.9 

w3 11.00 10.82 11.60 11.36 11.56 11.28 11.32 11.5 

w4 18.14 17.78 20.95 20.84 20.83 20.69 20.85 20.9 

w5 21.70 21.46 22.25 21.72 22.41 21.77 22.63 21.7 

w6 27.27 26.39 33.22 32.93 33.16 32.94 33.06 33.2 

w7 33.60 31.97 46.42 45.99 47.33 46.95 47.83 46.6 

w8 36.20 35.27 47.18 46.42 47.81 47.32 47.87 47.4 

w9 45.93 40.76 61.77 60.28 63.88 63.37 63.51 58.6 

w10 46.24 44.64 63.48 62.21 68.76 67.64 67.95 63.7 
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w6                                      w7                                      w8                                      w9                                      w10 

 
Fig. 4. Bending modes for Cone 2 

 
 

3. LARGE STATIC AND DYNAMIC DEFLECTIONS OF PLATES 
 

3.1. Large deflection of a cantilever plate under a uniformly distributed load along a free edge  
 

Consider a cantilever plate with clamped edge x=0 and distributed load q along the free edge x=a. 
The load q is set in such a way that the plate has large deflections. The geometrical parameters and 
material properties of the plate are as follows: length a=0.5m, width b=0.2m, thickness h=5mm, 
Young’s modulus E=2.1·1011N/m2, and Poisson’s ratio n =0.25. 

In this example and in other static tests described below, large deflections of the plates are 
computed by integration of the equations of motion with increased dissipation. Thus, the oscillation 
amplitude decreases much faster than in the real cases, but the final solution when the oscillations 
have ceased corresponds to the solution of the static large deflection equations with good accuracy, 
Fig. 5. 

 

 
Fig. 5. Determination of static deflection using the time-integration method 

 

Static deflection 
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Dimensionless horizontal and vertical deflections of the loaded edge for different load ratios 
 and FE discretization of the plate  in longitudinal and transversal directions are 

presented in Tab. 5. The last column shows the values of deflection computed in [4] using the theory 
of large deflection of beams. Deflected shapes of the plate in the xz plane are shown in Fig. 6. The 
results presented show that even a coarse FE discretization shows good agreement with the exact 
deflection values so that the maximal relative error is less than 1%. 

Table 5 
Large deflections of a cantilever plate 

 

 3x1 5x5 Nonlinear beam theory [4] 
      

0.25 0.004 0.085 0.004 0.085 0.004 0.083 

0.50 0.017 0.167 0.016 0.165 0.016 0.162 

0.75 0.036 0.243 0.035 0.239 0.034 0.235 

1 0.060 0.310 0.057 0.305 0.056 0.302 

2 0.168 0.502 0.162 0.497 0.160 0.494 

3 0.263 0.610 0.255 0.606 0.255 0.603 

4 0.337 0.676 0.329 0.673 0.329 0.670 

5 0.396 0.718 0.388 0.717 0.388 0.714 

6 0.442 0.748 0.435 0.748 0.434 0.744 

7 0.479 0.771 0.473 0.771 0.472 0.767 

8 0.511 0.788 0.505 0.788 0.504 0.785 

9 0.537 0.802 0.532 0.803 0.531 0.799 

10 0.560 0.814 0.555 0.815 0.555 0.811 
 
 

3.2. Large deflections of a square plate with clamped edges under uniform normal pressure 
 

Consider a square plate with clamped edges under uniform normal pressure p producing large 
deflections. The geometrical parameters and material properties of the plate are as follows: length of 
side a=2m, thickness h=5mm, Young’s modulus E=2.1·1011N/m2, and Poisson’s ratio n =0.316. 

Dimensionless deflections of the center of the plate for different pressure ratios  and FE 
discretization of the plate are presented in Tab. 6 and shown in Fig 7. The last column in Tab. 6 shows 
the values of deflections computed in [5] using the von Karman large-deflection equations. 
Deflections of the plate’s central section, which is parallel to the plate edge, for different pressure 
ratios are shown in Fig. 8. Analysis of the results shows that on refining FE discretization, a 
convergence to the exact solution is observed. 
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Fig. 6. Deflected shapes of a plate in the xz plane 
 

Table 6 
Dimensionless (w/h) deflections of the center of the clamped plate 

 
 4x4 8x8 16x16 Levy’s solution [5] 

17.79 0.264 0.244 0.238 0.237 

38.3 0.530 0.486 0.474 0.471 

63.4 0.789 0.718 0.699 0.695 

96.0 1.047 0.947 0.920 0.912 

134.0 1.282 1.156 1.122 1.121 

184.0 1.512 1.361 1.320 1.323 

245.0 1.737 1.564 1.516 1.521 

318.0 1.953 1.760 1.706 1.714 

402.0 2.158 1.946 1.887 1.902 

 
3.3. Large deflection of an annular plate loaded in the center with a concentrated force 
 

Consider an annular plate undergoing large deflection. A rigid body is attached to the inner edge of 
the plate, which is loaded in the center with the concentrated force P, Fig. 9. The outer edge of the 
plate is clamped. The geometrical parameters and material properties of the plate are as follows: inner 
radius Ri=0.5m, outer radius Ro=2m, thickness h =5mm, Young’s modulus E=2.1·1011N/m2, and 
Poisson’s ratio n =0.25. 

 

44 / Ehpa
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Fig. 7. Dimensionless (w/h) deflections of the center of the clamped plate 
 

 
 
Fig. 8. Dimensionless deflections of the plate section 

 

 
 
Fig. 9. Annular plate with an attached rigid body in the hole 

 
Dimensionless deflections of the free edge of the plate for different force ratios  and FE 

discretization of the plate in radial and transversal directions  are presented in Tab. 7. The last 
column in Tab.7 shows the values of deflections computed in [6] by the numerical solution of von 
Karman equations using the collocation method. Deflections of the plate’s radial section for different 
load ratios are shown in Fig. 10. This test confirms the applicability of the trapezoid element for the 
analysis of large deflections of thin plate structures. 
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Table 7 
Dimensionless (w/h) deflections of the free edge of the annular plate 

 

 4x16 8x16 16x16 Dumir et al. [6] 

10 0.7167 0.7048 0.7013 0.7016 

20 1.1020 1.0819 1.0760 1.0778 

30 1.3659 1.3405 1.3327 1.3408 

40 1.5719 1.5425 1.5334 1.5332 

50 1.7435 1.7111 1.7008 1.7052 

 

 
 
Fig. 10. Dimensionless deflections of a plate’s radial section 

 
3.4. Large oscillations of a rectangular thin plate with an attached rigid body 

 
Consider a dynamic simulation of a plate according to the experiment described in paper [7], 

Fig. 11. A rectangular plate 10´40cm in size is clamped on a short edge and loaded by a weight of the 
attached body in a vertex opposite to the clamping edge. During the experiment, the plate falls freely 
from the horizontal position. Large plate oscillations are recorded by cameras, and Cartesian 
coordinates are extracted for the attachment point of the body. The thickness of the plate is 0.5 mm, 
Young’s modulus E=1.89·1011N/m2, and Poisson’s ratio n =0.3. The mass of the attached body is 
0.26kg. 

A comparison of the numerical simulation for the plate oscillations with the experimental results is 
shown in Fig. 12. The plate model contains 8´20 finite elements, and the attached body is considered a 
rigid one. The curves correspond to the lateral (X), longitudinal (Y), and vertical (Z) displacements of 
the attachment point. Fig 13 shows the convergence of simulation results with an increase in the 
number of elements in the model. 
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Fig. 11. Large dynamic oscillations of a plate 

 

 
 
Fig. 12. Comparison of simulation (solid lines) and experimental (markers) results 

 

 
 
Fig. 13. Comparison of simulation results of plate oscillations for different plate meshings 
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4. BUCKLING OF A SIMPLY SUPPORTED SQUARE PLATE 
 

Consider a square plate with simply supported edges under compressive loading in-plane of the 
plate in the x-direction. The geometrical parameters and material properties of the plate are as follows: 
length of side a=2m, thickness h=5mm, Young’s modulus E=2.1·1011N/m2, and Poisson’s ratio n 
=0.25. 

In this test, the "natural frequency–compressive load" relationship is plotted. It is known that when 
a plate is compressed, its natural frequencies decrease. When the compressive load is critical, buckling 
occurs and the lowest natural frequency becomes zero. 

The "lowest natural frequency–compressive load" relationships for 4x4, 5x4, and 6x6 FE meshes 
are shown in Fig. 14. In the figure, ω/ω0 is the dimensionless frequency, ω0 is the theoretical value of 
the lowest natural frequency of the simply supported uncompressed plate, q/qcr is the dimensionless 
load, and qcr = 4π2D/b2 is the theoretical value of the critical load for the simply supported plate. 
Values of the dimensionless critical load approximation are 1.086 for a 4x4 mesh, 1.050 for a 5x5 
mesh, and 1.019 for a 6x6 mesh. 

 

 
 
Fig. 14. “Lowest natural frequency–compressive load” relationships for different FE discretizations 

 
 

5. CONCLUSION 
 
Computation of natural frequencies in Sect. 2 and comparison of their values with the results of 

other authors show that the derived equations of motion of flexible plates and shells yield quite an 
exact approximation of lower frequencies of flexible bodies.  

The ability of the derived equation of motion in absolute coordinates to simulate large deflections 
of thin flexible bodies in solving both static and dynamic problems is confirmed in Sect. 3. It is 
important that equations of motion for separate finite elements are generated taking into account the 
linear stiffness matrix  of FE. Nevertheless, the solutions of large deflection problems converge 
practically to exact ones with an increase in the number of finite elements, and this fact is the principal 
property of the absolute nodal coordinates. It is clear that the use of additional terms of the FE 
stiffness matrix corresponding to the nonlinear terms can improve the convergence, and we intend to 
continue the research in this direction. 

An example in Sect. 4 shows that the derived equations of motion are able to predict the buckling 
of thin plates correctly without taking into account the geometric stiffness matrix  of FE. 
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