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SIMULATION OF DYNAMIC PROCESSES OF INTERACTION OF CAR 
AND RAILWAY TRACK DURING TRAIN PASSAGE OF CURVED 
SECTIONS OF THE TRACK 

 
Summary. In this article, the considered principles for the development of calculation 

schemes and the subsequent formation of vibration equations are a special case of classical 
simulation of motion in space of solid body systems connected in space by kinematic 
connections. This approach is useful with limited computational capabilities and an 
assumption of the relatively small body movements inherent in railway crew bodies, and 
reduces the task of motion research to analysis of fluctuations. Various design schemes of 
freight car truck, mathematical modeling of systems dynamics, "crew-track" safety of 
freight car movement and withdrawal under different technical conditions of running parts 
and track are considered in this work. 

 
 
 
1. INTRODUCTION 
 

Simulation of dynamic processes of interaction of rolling stock and railway track became possible 
with the help of modern computer equipment evaluation of efforts acting on elements of a track when 
considering the operation of rolling stock-track system in dynamics. To achieve this, it is necessary to 
build special models of rolling stock and railway track.  

Most research works have examined the dynamics of rolling stock and the path for which 
deformations for computed forces were evaluated by finite-element analysis. During the research, the 
parameters of the track and rolling stock, corresponding to the target function, were found. As reported 
in the reports, it was noted that the results of the calculations of the efforts on the track elements and 
rolling stock were well in line with their actual observed values. In connection with the integration of 
Kazakhstan railways into the European and Asian railway network, it is necessary to carry out 
calculations by modern ISO 9000/9001 certified methods, understood and accepted in the countries of 
the common market [1, 2]. Despite the great potential of modern personal computers, calculations of the 
interaction between the track and rolling stock still have to be carried out according to the stages given 
in Table 1. It is possible that soon (with a significant increase in computer power) it will be possible to 
solve these tasks for the whole system at once. 

 
 

2. ANALYSIS OF FREIGHT CAR PARK 
 

The main task in solving the problem of safety of rolling stock movement is to find effective methods 
and means, which make it possible to describe with a high probability the dynamic processes that arise 
during rolling stock movement along the railway track taking into account the real states of the car-track 
system. These methods and means should provide not only qualitative but also quantitative information 
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about these processes and, at the same time, be adequate in terms of real analogues of the movement of 
natural cars on concrete sections of the way. The obtained results should be in the form of graphical 
oscillograms showing the change of each parameter during the car movement time. Initial technical data 
for the study shall describe in detail the values of mechanical and physical properties of the rolling stock-
track system [2, 3]. 

At present, with powerful computing computer systems, the general problem of non-linear car 
fluctuations in motion, both in straight and curved sections of the real path, can be solved. 

The Company 's freight fleet of cars is 65,521 units. The main share of the car park is gondola cars: 
49.8%. The remaining types of cars in the car park are distributed as follows: covered - 15.2%, platforms 
- 5.1%, tanks - 9.9% and others - 20.0%. The accepted axial load of freight wagons is not more than 230 
kN. 

Since the 1960s, the United States, Canada, Australia and other countries have produced four-axle 
cars with a capacity of 90 tons (axial loads of about 294 kN) and operate a car fleet with loads of up to 
340 kN on trains weighing 12 - 20 thousand tons. Foreign manufacturers widely use aluminum alloys 
to make bodies of freight cars, which allows to significantly reduce the weight of car containers to 17 - 
23 tons with a load capacity of 117 - 120 tons. For comparison, 1520 mm gauge freight cars have a 
relatively low load capacity (60-70 tons), require additional costs related to loading, unloading and 
mounting of goods, have small inter-repair runs and a low level of specialization; the axial load is 230 
kN and the weight of containers is 240 kN [3]. 
 
 
3.  EVALUATION OF DYNAMIC FORCES, ACTING ON THE RAILS FROM ROLLING 

STOCK, USING THE ADAMS/RAIL SOFTWARE SYSTEM 
 

Deformations of the railway track under load and imperfections of the track, its retreat within the 
limits of maintenance standards together with imperfections of the rolling stock, uneven wear and 
defects of the wheels of the cars - all this causes fluctuations of the rolling stock during its movement 
along the track. The oscillations contribute dynamic additives to the static load. The value of these 
additives can be determined by calculation. Let us take a look at the simulation steps in Table 1 in more 
detail [3, 5]. 

The ADAMS/Rail software system provides for the introduction of the main characteristics of the 
rolling stock, affecting its smooth movement and oscillation (characteristics of masses, suspension 
springs and dampers taking into account their location relative to the car body, wheel profile) and 
railway track section characteristics (transverse rail profiles, rail head irregularities along the track, 
longitudinal rail slopes, slope, outer rail elevation in the curve), spiral lengths, curve radii and circular 
curve lengths. 

Enter the track description file as input (longitudinal track profile - longitudinal and vertical 
coordinate, line plan, spatial geometry of right and left rail head - wheel and rail contact lines - single-
point or two-point contact, file describing irregularities on rail head rolling surfaces), the car wheel 
cross-profile description file, files describing the characteristics of all subsystems and elements of the 
car [6]. 

The presence of differences in the vertical coordinates of rail threads within the curve, bearing in 
normative documents the name "elevation of the outer rail" (measured usually in millimeters) and 
described in ADAMS/Rail parameters of block [CANT_ANGLE_PATH] of the railway description file 
(* .trk), is specified by the angle of inclination of the segment connecting the right and left rail thread 
relative to the horizontal, measured in radians. 

Mutual orientation of wheels and rails, and adopted coordinate systems for wheels and rails are 
shown in Fig. 3. The left and right wheels of the car are considered separately with their coordinate 
systems. As an example, Fig. 2 shows a diagram of the attachment of the springs and dampers of the 
freight car cart. 

The calculations take into account the peculiarities of the rail (its geometric deviations in plan and 
profile from the design position, which can be modeled by sinusoids, trapezoidal and step functions, or 
by introducing a table of coordinates of points of the rail axis, by introducing characteristics of spectral 
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densities of the deviations). Displacement of wheel and rail contact surfaces by value "u" (Fig. 8) is 
taken into account, which is determined by calculation in accordance with the values of geometric 
deviations of rail threads and dynamics of wheels movement. 

Table 1 
Simulation Stages 

 

No. 
The applied 

program 
complexes 

The applied 
models Purpose of a stage 

1 ADAMS/Rail, 
COSMOS/M 

Car model on the 
track 

Evaluation of dynamic forces acting on the rails from 
rolling stock. Calculation of deformations and stresses 
of railway track. 

2 COSMOS/M 
Track model, with 
loads from rolling 

stock 

Load distribution from rolling stock by track design. 
Determination of the values of the forces of interaction 
of the elements of the track. 

3 COSMOS/M Fastening knot 
model 

Strenuously deformed condition of the intermediate 
rail attachment unit and determination of loads on 
reinforced concrete tie. 

4 COSMOS/M 

Model of 
reinforced 

concrete sleeper 
in ballast prism 

Calculation of the stress-deformed state of reinforced 
concrete tie, determination of optimal parameters of 
tie, determination of the distribution of tie pressure on 
ballast, distribution of stresses on layers of ballast 
prism and in layers of non-rolled materials and in 
plates - insulation. 

5 COSMOS/M 

Model of 
laminated earth 
web on elastic 

base 

Calculation of strenuously deformed state of earth bed, 
extraction of the dense core of fill and assessment of 
stresses in the zones of contact between the core and 
the sloping part of the fill, assessment of the impact of 
fill cavities or fill base on its precipitation 

 

 
 

Fig. 1. Design diagram of the car 
 

Fig. 5-7 and Table 2 show coordinate systems and defined parameters, wheel and rail contact 
characteristics [7, 8]. 

Body 

Second stage of spring suspension
Cart 

First stage of spring suspension

Wheels 

Hertz spring
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Fig. 2. Diagram of attachment of springs and dampers of a freight car cart 
 

 
 

Fig. 3. Orientation of wheel-rail system elements along the left and right rail threads 
 

 
Fig. 4. Coordinate system orientation 
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Fig. 5. Orientation of local coordinate systems at the wheel–rail contact point 
 

 
Fig. 6. Wheel and rail coordinate systems, defined parameters 
 

 
 

Fig. 7. Wheel and rail contact parameters 
 

In the first approximation, the task can be solved for the measured plan and profile of the path 
obtained by passing the load device with the specified load on the axle [9]. According to Professor 
G.M. Shahunyantz, the error from the representation of an absolutely rigid path in the forces of 
interaction between the rolling stock and the way does not exceed 5% because the rigidity of the track 
as a whole is more than an order of magnitude higher than the rigidity of the suspension of the rolling 
stock; however, this approach does not allow determination of the redistribution of dynamic loads and 
deformations between individual elements of the track. 

All quantities between "discrete points" for which data are input in the source data files can be 
interpolated by various methods (linearly, quadratic ally, etc., splines and various other functions). 

The dynamics of rolling stock when passing curves using the ADAMS/Rail complex can be studied 
by non-stationary processes of passing curves by the car. Until recently, these crucial issues were not 
resolved, and the recommended amount of elevation of the outer rail in the curve was determined for 
steady-state carriage movement. In fact, the established movement of the car is not a rule, but an 



64               G. Bakyt, S. Abdullayev, N. Suleyeva, A. Yelshibekov, Zh. Seidemetova, Zh. Sadvakassova 
 
exception. With short spirals and short straight inserts between the reverse curves, the car's oscillations 
do not have time to come to a calm state. Deviations in the geometry of the track (vertical and lateral 
irregularities) cause additional oscillations of the wagon [10, 11]. 

Table 2 
Parameters describing wheel–rail contact 

 
 Coordinate system for the contact element on the rail. This is the same system as that for the 

transverse rail profile (MRS) 
 Beginning of coordinates of MRS 

 
Wheel orientation vector. Rotation of wheel profile relative to this axis forms the wheel body. 
Direction of rotation as with wheel profile. Determined in the relative coordinate system of 
WRS wheel 

 The initial orientation of the vector  in the WRS coordinate system 
 Coordinate system for determining the position of the contact location on the rail 

 Function, describing the wheel cross profile, value  added 
 Function, describing the cross profile of the rail 
 Range of change of friction characteristics along the rail 
 Limit position of wheel contact point on the rail corresponding to wheel derailment. If the 

contact point is lifted on the wheel ridge, a derailment message appears 
 Distance from the wheel profile coordinate system to the wheel axis of rotation (not always 

to the wheel axis) 
 Wheel angular speed 
 Vector between and  

 Vector of the relative speed of wheel movement on the rail 
 Rail Contact Coordinate System and Rail Coordinate System Transformation Matrix 

 Eccentricity of a nozzle of a wheel 
 Amount of deviation of the rail in plan (displacement only) 
 Contact point vector on wheel 
 Rail contact point vector 

 Transformation matrix between the rail contact coordinate system and the rail coordinate 
system 

 Friction coefficient 
 Coefficient of rigid sliding 
 Equivalent extremity 
 Contact Point Angular Parameter 
 Parameter of an angle of rotation 
 Half-wheel diameter, nominal distance to the wheel center line 
 Rated rolling radius of the wheel 
 Nominal contact angle in the MRS system 
 Cross shift of a wheel 
 Integrated variable 
 Angle of wheel run on rail 
 Undeformed distance between the rail profile and the contact line on the wheel 
 Elastic deformation of contacting wheel and rail 

 
As the results of the measurements show, plane-parallel movement of the car body is not observed 

even when the car moves along straight sections. Due to deviations on the way from the standards of 
content and due to irregularities on wheels, the car constantly oscillates; the directions (forms) of 
oscillations depend on the forcing frequencies and directions of loads. As can be seen from the data in 
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Fig. 9, for example, the side roll is sharply increased and then sharply weakened on even sections of the 
track. 

 
 

Fig. 8. Example of model for the determination of vertical dynamics of rolling stock in the case of an absolutely  
            rigid (non-deformable) track 
 

As an example, Figs. 10, 11 and 12 show some of the vertical and lateral force calculations carried 
out in the ADAMS/Rail software system for the movement of a freight car along a 1500 m radius curve 
and adjacent straight sections (outer rail elevation – 40mm, speed - 10-70 m/s). 

The simulation allows estimation of the unloading of the car wheels during its movement in the 
curve, which is impossible for traditional calculations of the way to determine, and such estimates are 
necessary to determine the level of traffic safety. 

By introducing the actual characteristics of the geometry of the path, which always has some kind of 
deviation from the content standards, it is possible to estimate the technical requirements for the rolling 
stock and the content standards of the track [12, 13]. 

Fig. 9 shows the graphs of vertical and transverse forces change in the wheel–rail contact for the left 
rail (thrust thread) and the right rail (internal in the curve rail). Changes in the relative maximum, average 
and minimum values of forces in wheel–rail contact for a passenger car are shown. 

As the calculations have shown, the dynamics of the car when fitting into the curves depends 
significantly on the geometry of the rail threads and the speeds of movement (Figs. 9, 11-14). As can be 
seen from the analysis of Figs. 11 and 13, the maximum loads on the external rail thread increase 
nonlinearly with an increase in speed. When speeds of 65-70 m/s are reached even on a curve with a 
strictly maintained geometry and complete absence of irregularities on the surface of the rails, there is a 
complete de-loading of individual wheels (Figs. 12 and 14), which indicates a high probability of the 
wheelset falling or even crashing. This calculation illustrates the procedure [14], and its results after 
analysis taking into account other factors will allow to assign the maximum permissible speed of 
movement on this curve not faster than 50 m/s or to check the efficiency of elevation increase of the 
outer rail of the curve. 

It can be seen that when the speed of movement increases to 70 m/s, the vertical forces acting on the 
thrust thread of the curve increase by 2.12 times compared to the static ones, and the de-loading of the 
wheel moving on the inner rail at the fluctuations of the car can reach 100%. Starting from speeds greater 
than 40 m/s, there is a large increase in the lateral force applied to the abutment thread. It is obvious that 
for this car design, the wheel stability on the rail at a speed of 70 m/s is not ensured [15, 16]. To ensure 
the stability of the car, it is necessary to change the track parameters or characteristics of the car 
suspension. 

In order to assess the change in the force effect of the car on the way when fitting into circular and 
reverse curves (S-shaped curve with a radius of 300 m, corresponding to the movement on the side path 
along the arrow translation of the 1/11 mark), simulation of the passenger car movement is performed 
(Figs. 10, 15). 
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Fig. 9. Dynamic forces acting on rail threads in curve R = 1500 m at v = 30 m/sec 
 

As the analysis of the calculation results for short S-shaped curves with a radius of 300 m with short 
(less than 25 m) straight inserts between curves showed, no steady motion was observed on the curve. 
As the speed of movement increases, the maximum and minimum loads on the rail threads change 
nonlinearly (Fig. 15). 
 

 
 

Fig. 10. Dynamic forces acting on rail threads in an S-shaped curve of 300 m radius from the first axis of the first  
              bogie (in the course of movement) at a speed of 10 m/s 
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Fig. 11. Dependence on the speed of vertical dynamic forces acting on the external rail thread in the curve of  
              radius 1500 m at an elevation of 40 mm 

 
 
Fig. 12. Dependence on the speed of vertical dynamic forces acting on the internal rail thread in the curve of  
              radius 1500 m at an elevation of 40 mm 
 

 
 

Fig. 13. Dependence on the speed of transverse dynamic forces acting on the external rail thread in the curve of  
              radius 1500 m at an elevation of 40 mm 
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Fig. 14. Dependence on the speed of transverse dynamic forces acting on the internal rail thread in the curve of  
              radius 1500 m at an elevation of 40 mm 

 
 

Fig. 15. Dependence on the speed of vertical dynamic forces acting on rail thread in an S-shaped curve of 300 m  
             radius 
 

Figs. 10 and 15 show the results of calculations of vertical and lateral forces at movement of the 
specified car from the straight line to the curve with a radius of 300 m with a spiral length of 3 m and 
zero elevation of the external rail (simulation of movement of the car with a straight line on the shift to 
the side track). If we compare the change of these forces along the switch path without joints with the 
change of forces at the entrance to the circular curve with the elevation branch of the outer rail along the 
spiral, we see a significant difference. When the car fits into the switch (where there is no elevation of 
the outer rail), the vertical and lateral pressures of the wheel on the rail are much higher and the car 
oscillations do not decrease. 

Determination of the dynamic characteristic of the car on the curved section of the track is carried 
out with mismatch of the outer rail elevation retraction and curvature retraction. 

In the practice of the current content of circular curves, it is common to require the end of the outer 
rail elevation retract to coincide with the beginning of the circular curve. 

The magnitude of the elevation of the outer rail in the circular curve is determined by the known 
formula: 

                                                             (1) 

where Vspec is the reduced train speed in km/h and R– is the curve radius, m. 
 

,25.12 spec. R
Vh ×=
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The established ideas about the equilibrium of centrifugal and centripetal forces from the elevation 
of the outer rail arose from the consideration of the "static picture of the balance of forces;" when the 
passenger car follows a long circular curve, there is a dynamic equilibrium. In a freight car that is not 
normally transported at a speed of more than 80 km/h, the effect of spring suspension begins to be 
affected usually at speeds of more than 60 km/h, and at lower speeds, the freight car moves as an 
uncompressed mass and the condition accepted by the CP774 for it is fair. The passenger car does not 
have time to come to balance as quickly as the cargo car and, for it, the condition does not reflect the 
essence of the processes of vibration attenuation at the entrance and exit from the curve. On lines where 
passenger traffic prevails, these circumstances need to be taken into account when planning curve 
straightening. 

For trains with less and more speed than the given one, the elevation of the outer rail turns out to be 
excessive or insufficient than that determined by the formula. Some heavy-duty cranes and other heavy 
equipment in accordance with the standards of JSC "NC" KTZ "cannot be transported along railway 
tracks if the elevation of the outer rail exceeds 80 mm. Lowering the elevation of the outer rail in the 
curve only for a single pass of heavy equipment is very not favourably; thus, an attempt is made to avoid 
excessive overestimation of the elevation of the outer rail in the distance of the track. 

According to the method of elevation of the outer rail, there are no general opinions in the curved 
sections of the railway tracks. Some experts believe in the benefits of overestimating the estimated 
elevation by about 20-30%. 

It is obvious that further research is required on the assignment of the elevation of the outer rail of 
the curve, but with a more general approach with consideration not of "statics," but of the dynamics of 
the processes taking place. 

As shown in the previous section, the oscillations of the passenger car in short curves of small radius 
do not have time to fade and there must be different criteria for assigning elevation than the condition 
of the CP774. 

 
 

4. CONCLUSIONS 
 

Analysis of the results of numerical calculations of the change of the pressure of the wheels of the 
passenger car on the outer and inner rails of the circular curve showed that the change of the speed of 
movement of the car in the curve has a significantly greater impact (up to 40-50% at a speed of up to 40 
m/s) on the change of vertical loads of the wheels on the rails than the mismatch of the points of the end 
of the elevation retraction and curvature retraction. 

At the circular curve, there is not decreasing of the car oscillations at the points of the end of elevation 
retraction coinciding with the end of the spiral. Usually, at least 2-5c is required to decrease the car 's 
oscillations and form a dynamic equilibrium. 

Usually, when calculating the interaction between the track and the rolling stock, the hypothesis of 
continuous rolling of the wheel on the rail is considered, which is not always fair. Modeling in the 
ADAMS/Rail software complex does not require this hypothesis and allows to determine cases when 
continuous rolling is broken, which happens not only in joints and in the presence of sliders on wheels 
but also in certain combinations of irregularities on the way. 

According to analysis of results of investigation of vertical oscillations of rolling stock-track system, 
when moving along short waves of periodic irregularities with significant amplitudes of dynamic 
equilibrium of interaction does not occur (in this case), local tear-off movement of wheels and sharp 
increase of loads (3-6 times more than static). 

These examples show a significantly greater possibility of calculation by numerical methods to 
correctly reflect the process of interaction of the track and rolling stock and to assess traffic safety using 
the ADAMS/Rail software complex and the possibility of scientific justification of technical 
requirements of mechanical parameters of cars and track and their content standards. Traditional 
calculations do not offer such possibilities. 

 
 



70               G. Bakyt, S. Abdullayev, N. Suleyeva, A. Yelshibekov, Zh. Seidemetova, Zh. Sadvakassova 
 
References 
 
1. Dudin, M.N. & Frolova, E.E. & Kuznetsov, M.N. & Drobysheva, L.V. & Krasulya E.V. Green 

logistics as an instrument for putting together a new model for professional and career-broadening 
training in global economic space. International Journal of Environmental and Science Education. 
2016. Vol. 11. No. 15. P. 8693-8705. 

2. Методика испытания к воздействию подвижного состава на рельс на условиях процесса 
надежности, утвержденные приказом вице-президента АО "НК "КТЖ" от 15 июня 2014 
года. № CP-52/14/189/04 [In Russian: Methods of accessing the impact of rolling stock on the 
track upon conditions of reliability process, approved by the order of the Vice-President of JSC 
«NC «KTZ» from June 15, 2014. No CP-52/14/189/04]. 

3. Esveld, K.C. Modern Railway Track. (2nd edition). MRT-Productions. The Netherlands. 200. 
P. 39-41. 

4. Wu, Q. & Luo, S. & Cole, C. Longitudinal dynamics and energy analysis for heavy haul trains. 
Journal of Modern Transportation. 2014.Vol. 22. No. 3. P. 127-136. 

5. Aggestam, E. & Jens, C.O. & Bolmsvik, N. & Bolmsvik, R. Simulation of vertical dynamic 
vehicle–track interaction using a two-dimensional slab track model. International Journal of 
Vehicle Mechanics and Mobility. 2018. Vol. 56. No. 11. P. 1633-1657. 

6. Sun, Y. & Cole, C. & Spiryagin, M. & Dhanasekar, M. Vertical dynamic interaction of trains and 
rail steel bridges. Electronic Journal of Structural Engineering. 2013.Vol. 13. No. 1. P. 88-97. 

7. Droździel, J. & Sowiński, B. Railway car dynamic response to track transition curve and single 
standard turnout. WIT Transactions on the Built Environment. 2006. Vol. 88. P. 849-858. 

8. Lau, A. & Hof, I. Simulation of train-turnout coupled dynamics using a multibody simulation 
software. Modeling and Simulation in Engineering. 2018. Vol. 2018. Article ID8578272. P. 1-10. 

9. Johansson, A. & Pålsson, B. & Ekhetal, M. Simulation of wheel–rail contact and damage in 
switches and crossings. Wear. 2011.Vol. 271. Nos. 1-2. P. 472-481. 

10. Wan, C. & Markine, V.L. & Shevtsov, I.Y. Improvement of vehicle–turnout interaction by 
optimising the shape of crossing nose. Vehicle System Dynamics. 2014. Vol. 52. No. 11. P. 1517-
1540.  

11. Di Gialleonardo E. & Bruni, S. & True, H. Analysis of the nonlinear dynamics of a 2-axle freight 
wagon in curves. Vehicle System Dynamics. Vol. 52. No. 1. 2014. P. 125-141. 

12. Gurule, S. & Wilson, N. Simulation of Wheel/Rail Interaction in Turnouts and Special Track Work. 
International Journal of Vehicle Mechanics and Mobility. Vol. 33. Issue sup1. 1999. P. 143-154. 

13. Brabie, D. On derailment-worthiness in railway vehicle design. Analysis of vehicle features 
influencing derailment processes and consequences. PhD Thesis. Royal Institute of Technology. 
Stockholm. 2007. 

14. Senini, S. & Flinders, F. & Oghanna, W. Dynamic simulation of wheel-rail interaction for 
locomotive traction studies. Proceedings of the 1993 IEEE/ASME Joint Railroad Conference. 
Pittsburgh. PA. USA. 1993. P. 27-34. 

 
 
Received 15.01.2019; accepted in revised form 05.06.2020 


