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PARALLEL COMPUTATIONS AND CO-SIMULATION IN UNIVERSAL 
MECHANISM SOFTWARE. PART I: ALGORITHMS AND 
IMPLEMENTATION 

 
Summary. Parallel computations speed up simulation of multibody system dynamics, 

in particular, dynamics of railway vehicles and trains. It is important for reduction of 
required time at the stage of new railway vehicle design, for increase of complexity of 
studied problems and for real-time applications. We consider realization of parallel 
computations in Universal Mechanism software in three different areas: simulation of rail 
vehicle and train dynamics, evaluation of wheel profile wear and multi-variant 
computations. The use of clusters for parallel running of multi-variant computations is 
illustrated. Co-simulation based on the interface between Universal Mechanism and 
Matlab/Simulink and other software tools is discussed. 

  
  

1. INTRODUCTION 
  

In this paper, we consider three areas for parallel computations: 
- simulation of rail vehicle and train dynamics, 
- evolution of railway wheel profile due to wear and 
- multi-variant computations. 
In the first two cases, the parallelism is realized on multi-core processors with the help of the 

multithread technique. The third one is based on the multiprocess technique that might use not only 
the local computer but also the network computational resources. 

Parallel computation is a well-known tool for speeding up the analysis of different scientific and 
engineering tasks. Compared with general multibody system (MBS) analysis, rail vehicle research has 
several specific features that should be taken into account [1]. For instance, dynamic models along 
with vehicles often include flexible rails and bridges, which increase the number of degrees of 
freedom and make parallel computations desired. 

Bibliography of parallelism in simulations of MBS dynamics includes hundreds of publications. 
Main theoretical results in this field are related to parallel treating articulated body systems with long 
kinematic chains. The divide-and-conquer (DCA) algorithm [2, 3] and the constraint force algorithm 
(CFA) [4] are the O(log N) algorithms, i.e. they require O(log N) operations in simulation of an 
articulated MBS with N rigid bodies on N processors. DCA, CFA and further developments of these 
algorithms [5-10] do not support implicit solver procedures for stiff MBS, which limits their 
application to simulation of rail vehicle dynamics.  

Another important area for application of parallelism is related to molecular dynamics and 
mathematically similar problems like DEM, SPH and so on [11, 12]. Concerning railway dynamic 
problems, these methods are actual in simulation of track ballast [13, 14] as well as fluid and granular 
media sloshing [15]. 
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A promising method of parallelization in the case of limited number of processors consists in 
dividing an MBS into several subsystems. Subsystems are selected in different manner, either by 
natural grouping of bodies and force elements [16, 17] or by cutting some joints [18]. Weakly 
connected subsystems are considered in the article by Getmansky & Gorobtsov [19]. 

In a particular case, any MBS can be considered as a set of separate bodies after cutting all joints. 
This method corresponds to the Cartesian MBS formulation. Joints are taken into account by 
constraint equations [20, 21] or replaced by spring-and-damper force elements (compliant joints) [22-
24]. Replacing rigid joints by compliant ones allows a very efficient parallelization of any MBS, but it 
makes equations of motion stiff. This fact was the main reason why the compliant joints could not be 
widely used in MBS software codes. To overcome the problems connected with the stiffness of 
equations, a heterogeneous multiscale method is proposed in Valasek and Mraz, as well as Mraz and 
Valasek [22, 23], to be used for numerical integration, whereas a special implicit solver is used in 
Pogorelov [24]. This paper includes an advanced description of the parallel algorithm proposed in 
Pogorelov [24] and implemented in Universal Mechanism (UM) software [25] for simulation of 
dynamics of general multibody systems and, in particular, rail vehicles and trains. 

The Cartesian formulation provides a good balanced parallel computation of kinematic relations, 
equations of motion and forces. At the same time, a large system of linear equations with a sparse 
system matrix must be solved many times during the integration process. In the case of rigid joints, the 
system matrix is symmetric but not positive definite and includes the mass matrix and the Jacobian 
matrix of constraint equations as blocks. The size of the matrix is 6N+m, where N is the number of 
bodies and m is the number of constraint equations [20]. If the compliant joints are used, the system 
matrix is a sum of the mass matrix and the Jacobian matrix of stiff forces including compliant joints, 
the matrix size is 6N, and it is positive definite [26, 27]. Parallel solving linear equations with a sparse 
matrix can be executed with the preconditioned conjugate gradient method (PCGM) [28-30]; some 
papers [31, 32] give examples of PCGM use in parallel MBS simulations. As it is shown in Section 2 
of this paper, a block-diagonal preconditioning matrix can be constructed as the dominant one in a 
definite sense, and a small number of PCGM iterations are required. 

In the case of MBS tasks, parallel computations are usually executed on multicore processors, GPU 
and clusters. In our opinion, simulations of rail vehicle and train dynamics should be implemented on 
multicore processors. GPU are highly productive in solving problems of molecular dynamics, and 
clusters are efficient in the case of multi-variant simulations, in particular, when solving optimization 
problems. 

Parallel simulation of MBS dynamics on multicore processors as it is implemented in UM software 
is considered in Section 2. The section includes general forms of equations of motion for rigid and 
flexible body systems according to the Cartesian formalism with compliant joints, description of the 
Park implicit solver and details of a parallel algorithm based on the fork-join method. Examples of 
parallel simulation of railway vehicle and train dynamics are given in Part II of this paper. 

The implementation of parallel approach to predict wear of railway wheel profiles on multicore 
processors is considered in Section 3. Two different methods are usually used for prediction of profile 
wear [33]: the sequential method [34, 35] and the parallel one [36, 37]. Both methods consider 
simulation of the rail vehicle dynamics on track sections with different geometry taking into account 
various irregularities, rail profiles, vehicle mass, speeds and so on. The methods differ in the strategy 
of modification of profiles. In the sequential algorithm, the profiles are modified at the end of each 
simulation. In the parallel algorithm, the modification of profiles due to wear is performed many times 
in small intervals of the traveling distance. The parallel algorithm is faster than the sequential one, but 
the latter method is applicable for rail profile wear as well. An example of use of a multicore processor 
for speeding up the evaluation of wheel profile wear is given in Part II of this paper. 

Parallel implementation of multi-variant computations in UM software is considered in Section 4. 
Some problems connected with co-simulation in MBS dynamics are discussed in Section 5. 

Later we will use the following terms and definitions. A process is an executing instance of a 
program. On a multiprocessor system, multiple processes can be executed in parallel. A thread is a 
subset of the process. A process has at least one thread. A process may also be made up of multiple 
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threads of execution that execute instructions concurrently. Multiple threads of control can exploit the 
true parallelism possible on multiprocessor systems. 

  
  

2. PARALLEL SIMULATION OF RAIL VEHICLE AND TRAIN DYNAMICS 
  

In this section, we consider an algorithm for parallel simulation of rail vehicles and trains dynamics 
on computers with multi-core processors. 

  
2.1. Equations of motion 

  
First, consider a rigid body with six degrees of freedom. Position of body i is set by three Cartesian 

coordinates  for the origin of the body-fixed system of coordinates, and by three 
orientation coordinates . Kinematics of body i includes formulas for linear and angular velocities 
and accelerations  as well as for the direct cosine matrix  

 .   (1) 
Newton-Euler dynamic equations in accelerations are as follows: 

          (2) 

where  is the  mass matrix, and   are the  vectors of accelerations, inertia 
forces and applied forces. 

 

Here  is the mass,  is the matrix of inertia tensor,  is the radius-vector of centre of mass 
relative to the body-fixed frame,  are applied force and torque corresponding to interaction 
between bodies i and j including forces for compliant joints and  is the  identity matrix. The 
symbol ‘tilde’ over a vector denotes a skew-symmetric matrix generated by the vector and used for the 
matrix notation of the vector product. 

Flexible bodies are used in railway research for modelling both parts of vehicles and elements of 
track infrastructure like rails, sleepers and bridges. Equations of motion of flexible bodies in 
multibody system dynamics are often derived with Craig-Bampton method [38].The body movement 
is split on a gross motion of a reference frame and small elastic deformations [39]. Coordinates and 
kinematics of the reference frame coincide with aforementioned ones for a rigid body (1). A vector to 
a separate body node k is as follows: 

 
with elastic displacement  of the node relative to reference frame. According to the Craig-
Bampton methodology, a set of constraint and fixed interface (static and dynamic) nodal modes 
specify the elastic deformations so that the node displacement  and rotation  are linear 
functions of generalized elastic coordinates   

. 
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The equations of motion of flexible body are as follows: 

   (3) 

where  are the damping and stiffness matrices, and  are the force and torque applied 
to node k. 

Finally, consider equations of motion for a flexible structure in nodal coordinates, which can be 
used for modeling flexible rails and sleepers. In contrary to the previous case, the nonlinear gross 
motion does not take place, and equation of motion can be derived according to the usual finite 
element method. Both rails and sleepers are considered here as Timoshenko or Euler-Bernoulli beams 
with the following equations of motion for a beam with  nodes:  

       (4) 

Here  is vector of  nodal coordinates,  are block tridiagonal mass, damping 
and stiffness matrices of size  and  is the  vector of applied forces and torques 
at node k. 

The general form of equation of motion for body i of types (2-4) is as follows: 
        (5) 

The matrices  in (5) should be omitted for rigid bodies.  
  

2.2. Numerical method 
  

Equations of motion (5) are stiff from the numerical point of view [40] by two main reasons. First, 
if flexible bodies are presented in the model, internal elastic and damping forces are stiff. Second, 
compliant joints, contact forces and some other force elements make equations stiff as well. The 
implicit Park numerical method is used in UM software for solving stiff equations of motion [41]. The 
linear multistep Park method is based on combination of backward differentiation formulas of the 
second and third orders. Consider some details of the method, which are important for description of 
the parallel computations.  

At the beginning of each integration step, predictor values of the coordinates  for body i are 
computed. Here and below we omit the step index. The unknown corrector values  are introduced 

so that . The Park finite difference formula is used to express the time derivatives of 
coordinates, velocities and accelerations in term of the corrector value 

 (6) 
Here h is the step size of integration. 

Let us introduce new unknown variables 
      (7) 

in which equations can be written in a more compact form. For example,  
.       (8) 

Now we introduce Jacobian matrices (JM) for stiff force elements. Let the generalized force  in 
Equations (5) be stiff and i, j are the indices of interacting bodies. Suppose the force depends on 
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positions and velocities of interacting bodies. Implicit integration scheme requires expansion of stiff 
forces and torques in series of  neglecting nonlinear terms 

,       (9) 

where  are the JM of forces. Approximate expressions for JM of different forces and 
compliant joints are derived in Pogorelov and Pogorelov [26, 27]. It is important that for the stiff 
forces, used in simulation of rail vehicles, the matrix  

 

composed of the approximate JM is negative semidefinite [26, 27]. 
Substitution of Equations (7-9) in (5) yields linear equations relative to the unknown values  

    (10) 

with the set  of stiff force indices for body i, the positive definite matrix  

   (11) 

and the vector summarizing all forces 

        (12) 

The PCGM [28, 29] is suitable for parallel solving Equations (10) and the  matrix is 
highly efficient as the preconditioning matrix in this algorithm. To explain this statement, consider 
Equations (10) in the full matrix form 

 

According to a theorem proved in Pogorelov [26], the spectral radius of the matrix  is less 
than 1, 

. 
In this sense, the preconditioning matrix  is a dominant one and a good convergence of the 

PCGM iterations is observed. If we take into account that the mass matrix is completely included in 
the preconditioning matrix, the PCGM iterations serves to stabilization of numerical method rather 
than to increase of the accuracy. As a result, the number of iterations is usually small and rarely 
exceeds one iteration. 

Consider steps of the PCGM for solving Equations (10) in the form suitable for parallel 
computations. 

- Cholesky factorization of blocks of the preconditioning matrix (11) 
      (13) 

Now Equations (10) can be rewritten for the variables : 

      (14) 

- PCGM start: computation of initial solution, direction and residual : 

         (15) 
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- PCGM iterations include three steps; k=1,2,… is the index of iterations.  
CGM1. ; . 

CGM2. ; . 

CGM3. ; ; ; . 

Iterations stop when , where e is the error tolerance.  
- After the convergence of iterations, the corrector values are computed 

      (16) 
as well as the final calculation of the model coordinates is done 

          (17) 
  

2.3. Parallel solution of equations of motion on multi-core processors 
  

The technique, based on the Windows API threads, is used for practical realization of parallel 
computations in UM according to the algorithms described in Section 2.2. The fork-join model of 
parallelism uses a master thread and several parallel sections (PSs) on each integration step [42], 
Fig. 1. The total number of threads is recommended not to exceed the number of cores on the local 
computer. There exists a barrier at the end of each PS, and the balancing of computational load in the 
threads is important. 

  

 
Fig. 1. Fork-join model of parallel computation 
 
 

Consider the list of PSs according to the algorithm described in Section 2.2. 
PS1. Prediction , computation of kinematics (1), mass matrices , internal elastic and 

damping forces , inertia  and gravity forces in Equations (5).  

PS2. Evaluation of forces and Jacobian matrices , Equations (9). 

PS3. Evaluation (11) and factorization (13) of the preconditioning matrices , computation of 

total forces in Equations (12) as well as  in (14). 

PS4. Computation of start vectors of the PCGM  (15). 
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The next three sections correspond to iterations of PCGM. 
PS5. Evaluation of , CGM1. 

PS6. Evaluation of , CGM2. 

PS7. Evaluation of , CGM3. 
PS8. Computation of the corrector values  (16). 
PS9. Computation of new values of coordinates (17), velocities and accelerations (6). 
All PSs make computations independent for each of the bodies except the evaluation of forces and 

Jacobians in PS2. Thus, a good balancing of the CPU load in the case of a rigid body MBS is usually 
possible after splitting the total set of bodies into near-equal subsets. To decrease the thread load 
disbalance in computation of forces in PS2, the force elements are preliminary grouped according to 
their type and uniformly distributed between the threads. 

In the case of a hybrid MBS including flexible bodies, an improvement of CPU load balancing can 
be achieved by using a simple algorithm for optimal distribution of computations between threads. 
The algorithm relates to the combinatorial generalized stone problem. Let  be the average CPU 
time, which is necessary to run computational procedure i in PSj for one body or force element. We 
accept this parameter as a weight of the procedure in the corresponding PS. The expected computation 
load for thread k is as follows: 

 

where  is the set of bodies or forces assigned to thread k in PSj. The optimal distribution of 
computation procedures between threads is formulated as the minimax problem  

 

i.e. as minimization of the maximal CPU load by changing the sets . An appropriate 
approximation of the optimal solution for N threads can be found by the following algorithm: 

- computational procedures are sorted in decreasing order of the weight ; 
- the first N procedures with the maximal weights are assigned to each thread; 
- each of the next procedures is assigned to the thread with the minimum aggregate weight. 

  
 

3. EVOLUTION OF RAILWAY WHEEL PROFILE DUE TO WEAR 
  

UM software has a special tool for prediction of railway wheel profiles evolution due to wear. In 
this tool, a parallel discrete approach has been implemented. This algorithm supposes a parallel 
simulation of a railway vehicle model with different configurations which somehow approximate the 
real operational conditions of the vehicle. Configurations differ in track geometry and irregularities, 
rail profiles, vehicle mass, speed and so on. The set of configurations should be a representative set of 
conditions in which the rail vehicle is operated. 

A track length travelled by the vehicle during the simulation is divided into a sequence of intervals 
(wear steps). The number of intervals is the same for all the configurations. The wheel profiles are 
kept unchanged within each of the interval. The wheel profiles are modified at the end of each wear 
step according to weighted diagrams of distribution of friction work along the wheel profile. A small 
quantity of material is removed on each wear step. Large number of steps results in a smooth profile 
modification. The calculation of material losses is based on the theory proposed by J.F. Archard [43]. 
Contact forces are computed using the model of W. Kik and J. Piotrowski [33] or the CONTACT 
library [44]. 

Multithread parallel computations are realized as follows (Fig. 2):  
- at each wear step, the configurations are computed in parallel using a fixed number of threads, 
- the computation barrier at the end of the section corresponds to the end of the wear step and 
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- modification of profiles and rebalancing of threads is executed before the start of the next step. 
A weight of a configuration for thread balancing is equal to its CPU time at the previous wear step. 

Similar to the optimization procedure described in Section 2.3, the list of configurations is sorted in 
decreasing order of the weights. At the begin of a new step, the parallel computation starts with the 
configurations of the maximal weight, and when a thread finishes the computation for the assigned 
configuration it obtains the next one with the maximal weight from the rest of the list. 

 

 
 

Fig. 2. Fork-join model of parallel computation of wear of railway wheel profiles 
  
  

4. MULTI-VARIANT PARALLEL COMPUTATIONS 
  

The aforementioned sections are devoted to parallel multithread computing of a numerical 
experiment within an executing instance of a program that is called a process. UM software also 
supports another type of parallel computing – parallel running the number of solvers as processes to 
calculate different models or different configurations of a model. Model configurations differ from 
each other in parameters (geometrical, inertial, stiffness, damping and other) or experimental 
conditions like wheel or rail profile, railway track geometry or irregularities and vehicle speed. 

Such an approach allows engineer to specify the list of model parameters and experimental 
conditions, its lower and upper limits and a number of points with the limit for each parameter and 
then run the automatic parallel computation of the series of numerical experiments. In typical 
engineering practice, there might be decades and hundreds and even thousands of numerical 
experiments. In such a case, automatic running a series of numerical experiments saves hours and days 
of monotonous work. 

To compute the series of numerical experiments, a control process runs one instance of solver 
many times sequentially or several of them simultaneously with feeding them source data for every 
next numerical experiment. At the same time, every solver may use one or several threads for 
computations. Thus, we have a combination of the multiprocess and multithread approaches. There are 
several possible strategies to compute a series of numerical experiments: (1) to run one solver 
sequentially with allowed maximum of computing threads in it, (2) to run allowed maximum of 
solvers with the only computing thread in it or (3) to run several solvers with several threads in each. 
The comparison of the possible strategies mentioned above will be given in Part II of the paper. In UM 
software, the maximum number of simultaneously running processes (solvers) and threads in one 
solver is limited by the number of logical processors of the operating system.  

UM software includes a special service of distributed calculations named UM Cluster. It allows 
using all computational power of a local/corporate network for execution of series of numerical 
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experiments that decreases time efforts correspondingly. This possibility is very easy and effective to 
use within computer centers and laboratories. Service of distributed calculations is based on using 
TCP/IP that allows employing any computer not only in local network but also in Intra- and Internet 
for the needs of a project. It significantly decreases total time for computation of big series of 
numerical experiments. 

The service consists of two parts: server and client ones. The server part works on the head 
computer and controls the execution – sends jobs and receives results back. The client part is run on 
the peripheral computers, gets and computes jobs and sends results to the server. 

Remote install and uninstall of the client parts on client computers are supported. Remote 
installation of the software components on the client computer runs automatically without disturbing 
remote users. There is a built-in tool to determine all available computers in a local network that 
simplify initial procedures of searching and adding client computers to the computational cluster. 

  
  

5. CO-SIMULATION 
  

Computer simulation in railway research sometimes requires a combination of purely multibody 
models that Universal Mechanism deals with and associated models of control systems, power 
electrical machines, hydraulic and pneumatic elements etc., see, for instance, the article by Wang et al 
[45]. Such complex systems cannot be described with the help of UM built-in elements and tools and 
should be simulated with the help of special-purpose codes. UM software supports several such 
interfaces: interface with Matlab/Simulink [46] and SimInTech [47], interface with dynamic-linked 
library (DLL) developed by user with the help of any programming language. 

Users can then simulate their systems' full-motion behaviour from within the Simulink or 
SimInTech environment or include their models into the UM environment and visualize the results 
using animations and plotting. 

UM software supports two different co-simulation techniques. The first technique supposes the 
exporting the Simulink or SimInTech models as a DLL with subsequent loading the DLL within the 
model context and setting connections between a mechanical part and the model exported as the DLL. 
Such an approach also allows a user to develop his/her own dynamic-linked library using any program 
environment that supports generating DLLs. In this sense, it is a universal way to plug in user’s code 
and algorithms into a UM model. 

The second technique supposes exporting a UM model from UM for posterior integration into a 
Simulink or SimInTech model. To import UM models into Simulink, the standard S-Function element 
is used. S-Function element includes the code that is automatically generated by UM and uses UM as a 
COM server to send and get signals. To import UM models into SimInTech model, the special ‘UM 
model’ block is used. 

Universal Mechanism is also distributed as a Component Object Model (COM) library for using in 
third-party applications including Simulink. Component Object Model (COM) is a binary-interface 
standard for software components introduced by Microsoft in 1993. It is used to enable inter-process 
communication object creation in a large range of programming languages [48]. COM interfaces 
implemented in UM allows a user to load UM models, change their parameters and simulate dynamics 
of the model in a co-simulation mode with getting kinematical data of the mechanical model for 
external visualization and sending control signals. Typical way of usage of UM COM interfaces is 
given in Fig. 3.  

Universal Mechanism as a COM server for dynamical analysis was used in a number of projects 
including two train driving real-time simulators [24, 49]. 

 
 

6. CONCLUSION 
  

A detailed model of parallelization in simulation of multibody systems containing both rigid and 
flexible bodies is described in the paper. The model includes equations of motion, with the main 
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feature consists in replacement of rigid joints by compliant ones; formulation of PCGM with a very 
efficient preconditioning; description of parallel sections for the fork-join parallelism; and the 
algorithm for improvement of thread balancing in parallel sections, which is important when the 
simulated model includes flexible bodies along with the rigid ones. As it will be shown in Part II of 
this publication, the method allows a considerable speed up of simulation on multicore processors, 
both relatively simple models of rail vehicles with about one hundred DOF and much more complex 
models with dozens of thousands of DOF. The algorithm efficiency is based on the use of shared 
memory parallelism, on parallelization of all stages of computations from the prediction up to the 
solution of linear equations, and on the good balancing of threads within all of the parallel sections. 

 
 

 
 

Fig. 3. Using UM COM server in the third-party application 
 
 

The implementation of the fork-joint model for the parallel approach to predicting wear of railway 
wheel profiles is described in the paper. The efficiency of this algorithm will be shown in Part II. 

Parallel multi-variant computations as well as UM interfaces with Matlab/Simulink and SimInTech 
are briefly discussed. 
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