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CRANE STABILITY ASSESSMENT METHOD IN THE OPERATING CYCLE 
 

Summary. The article presents stability assessment of the mobile crane handling 

system based on the developed method with the use of the mathematical model built and 

the model built in the integrated CAD/CAE environment. The model proposed consists of 

the main crane assemblies coupled together: the truck with outrigger system and the base, 

the slewing column, the inner and outer arms, the six-member telescopic boom, the hook 

with lifting sling and the transported load. Analyses were conducted of the displacements 

of the mass centre of the crane system, reactions of the outrigger system, stabilizing and 

overturning torques that act on the crane as well as the safety indicator values for the 

given movement trajectories of the crane working elements. 

 

 

1. INTRODUCTION 

 

This study adds to the research on the mobile crane [1-3], including selected configurations of 

working elements’ positioning together with applying load onto its outrigger system, which is the 

consequence of its components’ and cargo’s mass. 

Modelling of and research on the loaded mobile crane frame’s stability is a complex topic. 

Understanding crane's working conditions is crucial to designing an appropriate stability model which 

would include the mutual positions of crane’s components. 

The study [4-6] presented a model whose scope included the full specification of motion during 

cargo handling in combination with operational movements. A generalized formulation of the widely 

used crane model is analyzed using the method of multiple scales [7]. A comprehensive nonlinear 

modelling, featuring a full three-dimensional crane model and the adaptive vibration control 

architecture, is devised [8]. The studies [3-9] considered the influence of the outrigger system on the 

stability and the reaction of the ground on which the mobile crane is situated. The monograph [9] 

includes the challenges of modelling of and research on the dynamics of mobile cranes. The papers on 

crane modelling [10,11] presented the structure of crane’s assemblies as well as research on the 

dynamics of the crane’s frame. 

Carrying large loads with the aid of truck mobile cranes may in certain conditions lead to a stability 

loss [2, 11-19]. The value of the moment required to maintain balance in relation to the tip-over axis 

[13, 17, 20, 21] may constitute the measure of the risk of the crane tipping over. Loading with the 

moment from the mass of the crane elements and the loads is additionally summed up with the 

moments that originate from inertia forces (caused by the movement of the cargo and its parts) and 

from the load with wind [22-25]. The overturning torque Mw is counteracted by the stabilizing torque 

Mu with an opposite direction that is dependent on the mass and the location of the mass centre of the 

crane elements (Fig. 1). 
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Fig. 1. Diagram of forces and torques that act on the crane outrigger system: Gu – total weight of the crane 

system; Gf – weight of the truck including the outrigger system; Gb – crane base weight; Gk – weight of 

the slewing column; Gww – weight of the inner arm, Gwz - weight of the outer arm; Gm1, Gm2 – weights 

of hydraulic cylinders; Gt1, Gt2,.., Gt6 – weights of the arms of the six-member crane boom; Gh – hook 

weight, Gl – cargo weight; Ry1, Ry2, Ry3, Ry4 – vertical reactions of the base ; a&b – spacing of the crane 

outriggers 

   

According to international standards [26] and [27, 28], it is accepted that the crane is stable if at 

any position of the boom loaded with lifting capacity with an adequate extension, the stabilizing 

torque Mu is greater than the overturning torque Mw by the value of M. 
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i = 1÷4 - number of the tip-over axis; n – number of the elements of the crane system, whose 

weight vector Gi in the time of cargo transport, in a projection on the horizontal plane Oxz is 

located inside the tip-over contour that is limited by axes: k1, k2, k3 and k4; m – number of all 

the crane system elements; dij – distance of the gravity centre of the element j from the tip-over 

axis i in the projection on the horizontal plan. 
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The following may also constitute the measure of the crane stability: 

 the value of the pressure on the base of the least loaded crane support and the value of the 

changes of this force in time [1, 13, 29]. 

 the location of the symmetric mass centre of the handling system of the crane in relation to the 

support points [2, 13]. The system is stable if, in the projection on the horizontal plane, the 

mass centre is located inside the quadrangle that is established by the support points of the 

crane outrigger system.  

 the indicator Wb accepts values from 0 to 1. The value of the indicator of Wb = 0 constitutes 

the lower limit of safe operation. The stability indicator Wb was defined as follows: 
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i = 1 - 4 - number of the outrigger; j =  - number of the elementary fragment of the trajectory; 

)min( iRy , kN - the smallest of the vertical reactions of the base on the outrigger i; Gu, kN - total 

weight of the crane system; k1 - index of the maximum load of the crane outrigger, Rymax = Guk1, 

where: k1   0.25 – for a crane with four outriggers; k2 - index that determines the minimum load of 

the crane outrigger, Rymin = Guk2; t , s - time of the working cycle of the handling assignment; 

0bt , s - start of the crane working cycle; et , s - end of the crane working cycle. 

 

In order to guarantee the stability of the crane system, the value of the indicator Wb should be 

greater than zero when min(Ryi)>k1k2. The value of the indicator k2 is determined considering safety 

on the level that depends on the crane working conditions. It was accepted that the value of this index 

takes into account the wind speed as well as the velocities, accelerations and pulls in the crane 

kinematic pairs. Pulls may be the result of the cargo frozen to the ground being torn off, the cargo 

being broken off, sudden breaking, hitting an obstacle etc. 

From the perspective of the general principles of the safe operation of the crane, it is accepted that 

the value of the index k2 is proportional to the speed of the wind and crane elements as well as 

accelerations and pulls that occur in the kinematic pairs of lever devices. Provision of the value of the 

index k2 is one of the several alternative methods to determine the safety stock of the crane operation. 

The following changes were presented as the results of simulation testing: the location of the mass 

centre of the crane system, the reaction of the outrigger system, stabilizing and overturning torques 

that act on the crane and the values of the safety indicator depending on the location of the working 

elements of the machine. 

 

 

2. METHODOLOGY OF THE ASSESSMENT OF THE STABILITY OF THE CRANE  

    HANDLING SYSTEM 
   

The methodology as presented in Fig. 2 was used in simulation testing to assess the stability of the 

mobile crane handling system. The simulation model built with the use of the integrated CAD/CAE 

system makes it possible to assess the stability of the crane system through the example of the 

HIAB XS 111 crane with the proposed interaction and control system [29, 30-36]. 

The following are the basic elements of the method implemented: 

 parametric modelling of the elements and the entire crane system in the CAD system for the 

defined configuration, 

 determination of the system stability conditions (a notation of equations that constitute a 

mathematical model to calculate the following: the trajectory of the mass centres of the 

elements of the crane system, the reaction of the base on the crane outrigger system, the 

stabilizing torque Mu and the overturning torque Mw as well as the safety indicator), 
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 building of a kinematic model of the crane and carrying out simulation testing in the integrated 

CAD/CAE system, 

 an analysis of the kinematic and dynamic quantities of the crane system during handling in 

connection with maintaining constant balance (stability), and 

 an optimization of the trajectories of the displacements of the working systems of the crane for 

specific assignments taking into consideration the movement safety indicator considering the 

limiting conditions. By knowing the value of the safety indicator during working movements, 

it is possible to conduct an assessment of the risk of the loss of the crane’s stability and to 

select the optimal displacement trajectory. 

 

Integrated CAD - SolidWorks software as well as the module for computations and engineering 

analyses: CAE - SolidWorks Motion was used for the purpose of the modelling and numeric tests of 

the crane handling system. 

 

 
   

Fig. 2. Block diagram of computer aided assessment of the stability of the crane handling system 

 

 

3. SIMULATION MODEL OF THE HANDLING SYSTEM 
 

In simulation testing, a kinematic model was used of the mobile crane (HIAB XS 111) handling 

system with four degrees of freedom, which is presented in Fig. 3. 
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Fig. 3. The kinematic model of the handling system of mobile crane type HDS HIAB XS111 
 

The model of the crane developed consists of the main crane assemblies coupled together: the truck 

with outrigger system and the base, the slewing column, the inner and outer arms, the six-member 

telescopic boom, the hook with lifting sling and the transported load. 

Analyses were conducted of the displacements of the mass centre of the crane system, reactions of 

the outrigger system, stabilizing and overturning torques that act on the crane as well as the safety 

indicator values for the given movement trajectories of the crane working elements. 

Configuration of the mobile crane’s cargo handling system (Fig. 4) as a combination of connected 

elements was analyzed as sets of local coordinate systems (Fig. 5) connected with the crane’s 

components. The cargo’s position vector    , in the absolute coordinate system Oxyz, is given with the 

following formula: 

 

                          
                                        (7) 

 

where: 

        
     

     
          

     
   (8) 

 

                                      - vectors defining local coordinate systems origins’ positions located at 

points F, B, K, Ww, Wz, T, H, Z, L, which belong to the truck f, the crane’s base b, slewing column k, 

outer Ww and inner Wz arms, six-member telescopic boom t, hook h, lifting sling z, and the handled 

cargo l. 

An analytical description of the configuration of the crane kinematic system involves strenuous 

conversions of vector-matrix equations (2-3), until explicit dependences have been obtained that 

determine the variable angular and linear quantities. Knowledge of these dependences is very 

desirable. It needs to be emphasized, however, that it is very difficult to obtain explicit dependences 

for the crane handling system. The integrated CAD/CAE system was therefore used to determine 

vectors that specify the configuration of the crane system. 



146   W. Kacalak, Z. Budniak, M. Majewski 

 

 
Fig. 4. Mobile crane handling system's configuration during operations 

 

 

 
Fig. 5. Assembly overview of the vehicle’s (t) chassis, base (b), column (k), and cargo (l), where local coordinate 

systems         ,         ,          and          are related to the main mounting base, and the 

local coordinate systems              ,             ,              and              are helper mounting 

bases 

 

In order to determine dependences between the configuration coordinates (, ,  , t)  and the base 

coordinates of the location of the cargo, temporary 3D bonds were introduced into the simulation 

model, which determine the location of the handling system and its elements.  
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In the model developed, drives were defined that perform the rotary motion of the crane column 

with velocity    and linear drives that force the rotary motion of the inner and outer arms with 

velocities    and    as well as sliding out of the six-member telescopic boom with velocity    . 

 

 

4. RESEARCH RESULTS 
 

The stability evaluation of the handling assignment was conducted with a mobile crane of the HDS 

HIAB XS111 type. The configuration of the movement of the working mechanisms of the crane 

during the execution of the three variants of the handling assignment is presented in Table 1, where the 

denotations of the location parameters were accepted according to Fig. 3. The cargo located in position 

A was to be transported and positioned in location B (Fig. 6). 

 

                                                                                                                  Table 1 

Parameters of sequential movements for three variants of handling assignment 
 

Movement 

sequence 

Variant of cargo displacements 

I II III 

1   = 7.2   = 7.2   = 7.2 

2  = -189 t = -1.5 m t = 2.1 m 

4 t = 2.1 m  = -189  = -189 

4   = -5.2 t = 3.6 m   = -5.2 

5 -   = -5.2  

   

 

   
 

Fig. 6. Handling assignment consisting in carrying the cargo from its initial position A to position in point B, for  

           three displacement variants 
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For simulation purposes, the following assumptions were accepted in simulation testing: 

 in the simulation testing, the following propeller speeds were accepted:  = 18 deg/s, 

  = 2.5 deg/s,  = 5 deg/s, t =0,3 m/s, 

 the value of the safety indicator was k1 = 0.25. This means that in the most favourable position 

of the centre of the mass Wu(xWu,zWu) of the crane system, in a projection on the horizontal 

plane, all the vertical reactions in the outriggers are identical and they constitute 25 % of the 

total load Gu, 

 the value of the safety indicator k2 = 0.05,  

 it was accepted in the simulation testing that the crane is not subject to the wind pressure force 

(the wind speed is smaller than w < 8.3 m and it is neglected), 

 the working movements of the crane are smoothly controlled, hence it was accepted that 

inertia forces can be neglected, 

 the mass of the cargo carried is ml = 560 kg. 

The integrated CAD/CAE system with an additional computational application was used in 

simulation testing, which permitted the following among others: 

 an accurate determination of the coordinates of any point of the crane system based on the 

mathematical model that describes its configuration [2], 

 establishing the trajectory of the gravity centre of the crane Wu (xWu, zWu), 

 calculation of the reaction in the outriggers Ry1, Ry2 Ry3, Ry4 = f {Gl ,  Wu (xWu, zWu), t} - [1], 

 calculation of the difference of the torques M = Mu -Mw = f {Gl ,  Wu (xWu, zWu), t}, 

 calculation of the safety indicator Wb = f {Gl ,  Wu (xWu, zWu), t}. 

 

 
Fig. 7. Courses of the value of the safety indicator Wb for the three variants of the handling assignment, where:  

            ● - start and end of movement,  - start and end of circular motion,  - change of the tip-over axis from 

             k1 to k2 

 

The trajectories presented in Fig. 6 that are determined by the gravity centres Wu(xWu, zWu) of the 

crane system are located inside the tip-over outline S1S2S3S4 (detail C); hence, stability conditions are 

met. This is confirmed by the courses of the formation of the value of the safety indicator Wb that are 
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presented in Fig. 7. It is evident for the handling assignment example presented that the minimum 

value of the safety indicator for all of the three cases is greater than 0; hence, the crane system is stable 

over the whole range. For the third variant of the handling assignment, however, the value of this 

indicator Wb = 0.002 is very small. This means that for the trajectory of the load carried H the 

working conditions are the least favourable as there is a risk of a loss of the crane system stability. 

This is confirmed with the diagrams from Fig. 8. 

By analysing the courses presented, it can be found that in spite of ensuring the crane’s static 

stability, there may occur a risk to its operation (Fig. 7: variant III). In the time interval between the 

14
th
 and 16

th
 second, the values of the horizontal reaction force Rymin (Fig. 7a) and the torque 

differences M (Fig. 7b) are the lowest. The gravity centre Wu (Fig. 7) is located too close to the tip-

over axis S1S4: as little as in the distance of d= 0.34 m. 

 

a) 

 

b) 

 
   

Fig. 8. Changes to the value of the base vertical reaction forces min(Ryi) (a) and values Mmin (b) during 

            displacement of the cargo for the three variants of handling assignment 

 

 

5. CONCLUSION 
 

The article presents the method for efficiency assessment of the crane handling system for various 

load conditions and different cargo displacement trajectories with the use of modern CAD/CAE 

computing techniques. The developed simulation model, based on the example of a mobile crane type 

HDS HIAB XS111, allows to calculate variable configuration systems of the crane in the Cartesian 

space, positions of mass centres of the crane system, reactions and moments interacting with the 

outrigger system and the path length of the cargo transported. 

Owing to the results of numerical simulation that meet stability conditions, it is possible to 

determine the optimum trajectory of the cargo displacements for the selected handling assignment. In 

optimization procedures, where the minimization of the path or handling time is the objective function, 

the values that determine the crane stability are constraining conditions. The use of the corrections of 

the displacements of the moving elements of the crane may prevent the outriggers from being broken 

off, and hence it allows fully safe operation in any conditions. 
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