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SPRING-LOADED BATCHER 
 

Summary. On the base of the analysis of the application of vibration mechanisms in 

the motor transport vehicles, considering the possibilities of fuel injection systems, the 

study presents survey of possibilities the usage of the devices micro-dosing and spraying 

apparatus, the construction and the principle of the operation of vibration-assisted spring-

loaded batcher, the necessary for its functioning vibration operation forms and the 

dependences of measured fuel amount on the leakage chamber width and how it is related 

to vibration frequency and amplitude. The results of mathematical modeling and 

experimental analysis based on laser holographic interferometry are presented. 

 

 

1. INTRODUCTION 

 

Motor transport companies constantly face the problem of fuel dosage in fuel injection systems, 

which is due to complex constructions and their control. As a result, the speed and reliability suffer. A 

part of the problems is solved in some studies [5, 2]. 

We would like to offer the new spring-loaded batcher adapted for fuel injection in motor transport 

systems. 

The aim of this study is to investigate the possibilities of spring-loaded batcher for fuel injection in 

correct doses. 

The following tasks are solved to achieve this goal: 

 to survey the possibilities of usage of the device for fuel injection, 

 to present the construction and operation principles of vibratory spring-loaded butcher, 

 to present the theoretical evidence of the system functioning, and 

 to experimentally analyze the characteristics of the vibration spring. 

The study presents the construction of vibration-assisted spring-loaded batcher, describes its 

principle of operation, and introduces the spring-loaded batcher transverse vibration forms and the 

dependence of the vibration frequency and the amplitude on the dosed liquid. 

 

1.1. The survey of devices for fuel injection 

 

In Fig. 1 - 4 the injector schemes of indirect and direct gasoline injection are presented [3, 8, 1, 7]. 

In Fig. 1, a structure of low-pressure injector with electromagnetic control is presented [3], which 

has a relatively large length of delay, called a solenoid response time. 

High-pressure piezo injectors, shown in Fig. 4, have greater accuracy and faster reaction [7]. They 

are smaller than electromagnetic injectors and have fewer moving parts; therefore, they break down 

less often. But in practice, they break down as often as electromagnetic injectors and are not 

recommended. 
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Fig. 1. Fuel injector: 1 - filter; 2 - connection; 3 - electromagnetic coil; 4 - electromagnetic solenoids; 5 - needle 

           valve 

 

 
Fig. 2. GDI injector nozzle: 1 - injection;  2 - needle valve; 3 - plunger;  4 - coil windings, 5 - ring seal; 6 -  

            inlet, 7 - plunger spring; 8 - wiring terminal 

 

 
Fig. 3. High-pressure nozzle: 1 - armature; 2 - electrical connection; 3 - fuel inlet; 4 - coil; 5 - ring seal; 6 - 

            injection 

 

Direct injection injectors are high-pressure injectors (Fig. 2, 3) [8]. They have short injection 

duration, thus allowing injection of fuel into cylinder more than once during a power stroke.  

 
 

Fig. 4. Piezo-ceramic high-pressure nozzle: 1 - piezo element; 2 - fuel; 3 - needle valve; 4 - injection 

 

All the above mentioned systems have one structural characteristic in common – fuel injection is 

injected through holes that are at the end of injector. Therefore, the max debits are limited as the 

injection is performed through one hole or a single-hole system. 

 

 

 



Spring-loaded batcher  53 

 

1.2. The survey of micro-dosing and spraying apparatus 

 

Micro-dosing and spraying apparatus, its design optimization, operation principles and research 

results are presented in various papers [9 - 15]. Its functionality is based on the influence of high-

frequency vibrations generated by piezo-actuator to the flow of liquid substances in a micro tube. Such 

spray systems provide high accuracy of micro-dosing and are applicable in a variety of applications 

from avionics to medicine. Their disadvantage in solving problems of fast fuel dosage change may be 

considered the limited possibilities to maximally fast make the changes of fuel flow rate in a wide 

range. 

 

2. VIBRATION-ASSISTED SPRING-LOADED BATCHER: CONSTRUCTION AND  

    PRINCIPLE OF OPERATION 
 

The spring-loaded batcher is a rigid steel spring made of turns without gaps and is capable of 

ensuring system tightness in case of fuel supplied under fixed pressure to the sealed spring. The 

spring-loaded batcher is shown in fig. 5. 

The spring-loaded batcher (numbered 1) is measured at the car inlet manifold (numbered 2). Let us 

suppose that the inlet opening is at the left end of the spring. Another end of the spring (1) is tightened 

and fixed to transverse vibration vibrator (3).  

When the spring is at rest, it does not leak out the fuel between the turns (the close contact between 

the turns provides the tightness of the spring). 

Then, when the transverse vibrations are excited by the help of the vibrator in the form of standing 

four half-waves in the spring, the spaces between the turns appear, which provide the possibilities for 

the fuel leak-out. The four half-waves are excited in order to ensure that their amplitude peak phases 

appeared at the liquid centers of inlet manifold (these openings represent the four-cylinder engine 

mixture intake channels). The standing vibration waves of the spring are shown in fig. 5. 

It is obvious, that when the piston moves down, rarefaction is caused, which intakes the fuel 

mixture into the ignition chamber. 

This is only one of the possibilities to arrange the batcher. The other solution could be to arrange 

the spring-loaded batcher in each channel and excite transverse vibrations, e.g. in the shape of a single 

half-wave. This would provide the possibility for a separate batcher to operate independently (Fig. 6). 

 
 

Fig. 5. Spring-loaded batcher 
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Fig. 6. Spring-loaded batcher in each channel 

 

 

3. THEORETICAL SUBSTANTIATION OF POSSIBILITIES FOR THE BATCHER  

    FUNCTIONING 

 

The rigid coiled spring could be considered as a duct. 

Let us suppose, that within the range of spring strains analyzed, the material elasticity is constant, 

therefore, dependence on the strain amount from the applied force is directly proportional.  

If the spring is affected by the axis strength force, the existing winding area will be proportional to 

the spring elongation.  

The increased surface of elongated spring will be determined, when it is coiled into the arc. 

The calculation scheme is presented in Fig. 7. 

In the inner part of bended spring, the turns touch each other tightly.  

The inner arc curvature range is 0 . It is equal to the following: 
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The length of the arc L is equal to the following: 
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The outer part of the arc between the turns will have the gap , which being in the shape of a 

spiral, decreases to 0 in the inner part of the arc. Thus, the gap of spiral shifting width gap is produced. 

The outer arc radius iš  is equal the following: 

 )(20 rRiš     (3) 

The outer arc length išL is the following: 

      00 )(2 rRL išiš   (4) 

where,  - spring-duct diameter. It is equal to the following: 
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Thus, the outer arc length išL is the following: 
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Outer arc elongation L is equal to the following: 

   LLLLL iš   (7) 

Thus average elongation of the spring vidL  is equal to the following: 
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Increased surface of average elongated spring vidS  will be equal to the following: 

 

 )(22 2 rRRLRS vidvid     (9) 

 

This is the space for the leak out of the part of fuel. 

Let us analyze the case, when the spring-duct axis is in the shape of curve, which is presented in 

Fig. 8. 

In general case between  af  and  bf : 
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If the excited vibrations are in the shape of sine, the half of its length pL will be as follows (Fig.9): 
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The spring-duct elongation half-waves pL will be the following: 
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This elongation of the spring affects the increase of its inner surface: 

 LRSvid  2   (13) 

Thus, the outer surface S area change could be expressed as follows: 
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where 0A - maximum amplitude of standing waves; x  – spring-duct coordinate along axis;   - length 

of wave; f - frequency, Hz.  

Thus, we could confirm, that the higher the amplitude of spring vibration, the wider the space 

between the spring turns and more fuel will leak out between them. 

 

 

4. EXPERIMENTAL ANALYSIS OF THE SPRING 

 
The amplitudes of vibration of the structure are determined using the methodology presented in 

papers [4, 6]. Fig. 10 presents the structural diagram of a setup for experimental analysis of the spring 

vibration. The stand contains a spring that is harmonically excited by the high-frequency signal 

generator (2) and the amplifier (3). The signal frequency is monitored by the frequency meter (4), and 

the voltage amplitude of the power supply is monitored by the voltmeter (5). The optical circuit of the 

stand includes a holographic installation with a helium-neon laser which serves as a source of coherent 

radiation. The beam from the laser (6) splits into two mutually coherent beams passing through the 

beam splitter (7). The object beam, reflected from the mirror (8), is split by the lens (10) and 

illuminates the surface of the tubular working tube (1) and, after reflecting from it, impinges on the 

photographic plate (12). The reference beam, reflected by the mirror (9), and expanded by the lens 

(11), illuminates the holographic plate (12) where the interference structure is recorded. 
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Fig. 7. Calculation scheme of the spring elongation 

 

 

 
Fig. 8. Spring axis as curve 

 

 

 
Fig. 9. Transverse vibrations of spring-loaded batcher 
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Fig. 10. The schematic drawing of the laser holographic interferometry system: 1 - tubular working tube; 2 - 

high-frequency signal generator, 3 - amplifier; 4 - frequency meter; 5 - voltmeter, 6 - laser; 7 - beam 

splitter; 8, 9 - mirror; 10, 11 - lens; 12 - photographic plate; 13 - recorder 

 

The characteristic function defining the complex amplitude of the laser beam MT in the plane of the 

hologram formed by the time averaging holography techniques takes the following form: 
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where T  the exposure time of the hologram, (T >> 1/);   the frequency of structural vibrations,  

 the laser wavelength; J0  zero order Bessel function of the first type. 
Then, the resulting intensity I of the point (x, y) on the hologram is as follows: 

     22 ,, TMyxayxI  ,  (17) 

where a(x, y)  the distribution of the amplitude of the incident laser beam. It can be noted that the 

centers of dark interference bands in the holographic interferogram coincide with such values of Z(x) 

which turn the Bessel function to zero. The structure of the distribution of the interference bands does 

not depend on the static deformations of the structure, or on the distance between the structure and the 

hologram.  

The practical problem using the time averaging holographic interferometry is related to the fact that 

the surface of analyzed object must perform steady state vibration, otherwise the interference band 

pattern can be hardly interpretable. As the construction elements of the analyzed system oscillate but 

do not perform translational motion, the application of this convenient holographic analysis turns out 

to be not very effective. 

Results of experimental analysis are presented in Fig. 11. 
 

 
a) 

 
b) 

Fig. 11. Results of experimental analysis: holographic interferogram of vibrating spring at frequency 1,24 kHz 

              (a), distribution amplitude of vibration of spring. (b) 
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5. THE RESULTS OF THE STUDY 

 

The aspects of particle disperse and flow turbulence analysis are not discussed in the papers. 

When forming the theoretical mathematical model, it is assumed that there is direct dependency 

between the amount of fluid that leaks out through the gap between the spring turns while the spring is 

bended and the surface between the spring turns. 

Analog equation of the spring-duct axis (10) when excited vibrations are in the shape of sine is 

expressed (14). 

Results of experimental analysis are presented by holographic interferogram in Fig. 11. 

 

 

6. CONCLUSIONS 
 

The vibration-assisted spring-loaded batcher is applied for the fuel metering in the car engine inlet 

manifolds. Its construction is simple, can be easily and exactly controlled, and achieves proper values 

of vibration amplitudes. 

The main bottleneck of reviewed devices for fuel injection is limited possibilities to maximally fast 

make the changes of fuel flow rate in a wide range. 

The theoretical substantiation of the possibilities of the dispenser functioning is presented by the 

way out of standing vibrating waves of the spring in the dispenser. 

Results of experimental analysis are presented by holographic interferogram of distribution amplitude 

of vibration of spring at frequency of 1,24 kHz. 
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