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ON A FAIR MANIFOLD FARE RATING ON A LONG TRAFFIC LINE 
 

Summary. The paper studies the possibilities to design a fair manifold tariff on a long 
traffic line. If a single tariff is used on a long bus or railway line, passengers travelling 
long distances are favoured at the expense of those travelling short distances. The fairest 
approach to tariff is setting an individual tariff for every origin–destination relation of 
line stops that expresses real travel costs. However, sometimes the individual tariff is too 
complicated and is therefore replaced by double-, triple- or manifold tariff. This paper 
shows how to design a manifold tariff in order to minimize unfairness to passengers. 

 
 

1. INTRODUCTION 
 

Suppose we are given a long bus line with a single tariff. Some passengers travel long distances 
while others take short trips. Such a single tariff is advantageous for the first-mentioned passengers. 
However, a single tariff is inconvenient for short-trip passengers. Hamacher and Schöbel tried to solve 
this problem by dividing serviced area into zones in [2, 3]. Another way to improve fairness is to 
introduce a double tariff – fare 𝑥 for passengers travelling at most 𝑘 laps and fare 𝑦 for passengers 
travelling more than 𝑘 laps. A generalization of double tariff is the approach where passengers are 
sorted into several groups by the number of laps traveled and determine fare for every group. This 
paper shows how to design such a fair manifold tariff. 

 
 

2. A MATHEMATICAL MODELAND ITS SOLUTION 
 

Suppose we are given a bus line L with 𝑛 bus stops. Lap of a line 𝐿 is a segment of a bus line 
between two successive bus stops. Suppose, we are given a line 𝐿with 𝑛 bus stops and the following 
input data: 
𝑅𝑖 – the number of passengers travelling exactly along 𝑖 laps of the line 𝐿 (𝑖 = 1,2, … ,𝑛− 1) 
𝑡𝑖 – ideal, but for some reasons inapplicable, distance tariff for passengers travelling along  
       exactly 𝑖 laps of the line 𝐿 
𝐾 – the number of tariff regions 
the numbers 0 = 𝑘0 < 𝑘1 < 𝑘2 < ⋯ < 𝑘𝐾 = 𝑛 − 1 – boundary   
numbers of tariff regions – all passengers travelling along 𝑖 laps where 𝑘𝑖−1 < 𝑗 ≤ 𝑘𝑖 pay the  
same fare. 
Let 𝑥1,𝑥2, … , 𝑥𝐾 be unknown variables with the following meaning: 
𝑥1 – manifold tariff fare for passengers traveling at most 𝑘1 laps 
𝑥2 – manifold tariff fare for passengers traveling from (𝑘1 + 1)  to 𝑘2laps 
𝑥𝑖 – manifold tariff fare for passengers traveling from (𝑘𝑖−1 + 1)  to 𝑘𝑖laps 
𝑥𝐾 – manifold tariff fare for passengers traveling from (𝑘𝐾−1 + 1)  to 𝑘𝐾laps; 𝑘𝐾 = 𝑛 − 1 
Total fare on line 𝐿 in the case of ideal fair tariff is 
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 𝐹 = ∑ 𝑡𝑖𝑅𝑖𝑛−1

𝑖 = 1   (1) 

Total fare on line 𝐿 in the case of multifold tariff is 

 𝐹𝑚 = ∑ ∑ 𝑥𝑟𝑅𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1   (2) 

A bus provider wants to keep the income from double tariff the same as the one from ideal fair 
tariff, i.e.: 
 𝐹 = 𝐹𝑚 (3) 
 ∑ 𝑡𝑖𝑅𝑖𝑛−1

𝑖=1 = ∑ ∑ 𝑥𝑟𝑅𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1  (4) 

There are several ways to express unfairness 𝑢𝑖 to a passenger travelling exactly 𝑖 laps. 
A comprehensive survey of attitudes to fairness is presented in [1]. We decided to use the second 
power of the difference between the ideal fare and the multifold fare of a single passenger travelling 
exactly 𝑖 laps: 

 𝑢𝑖 =

⎩
⎨

⎧(𝑥1 − 𝑡𝑖)2  if              0 <𝑖  ≤𝑘1
(𝑥2 − 𝑡𝑖)2  if      𝑘1+1 <𝑖  ≤𝑘2
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

(𝑥𝐾 − 𝑡𝑖)2  if  𝑘𝐾−1+1 <𝑖  ≤𝑘𝐾

 (5) 

There are several reasons for this selection. The perception of unfairness is not linear. People are 
willing to ignore small injustices, but are sensitive to large discrepancies. The simplest model of 
nonlinear increasing perception of unfairness is a quadratic function. 

Another motive to use the second power of differences is a similarity with the linear regression 
procedure where parameters of the regression line are obtained by minimization of the sum of squared 
differences. Last but not least, the resulting mathematical model allows an exact mathematical solution 
based on well-known mathematical methods. 

Total unfairness to all passengers travelling exactly 𝑖 laps is  

 𝑅𝑖𝑢𝑖 = 𝑅𝑖(𝑥𝑟 − 𝑡𝑖)2 (6) 
where 𝑟 is such that 𝑖 ∈ (𝑘𝑟−1,𝑘𝑟〉. 

Total unfairness to all passengers travelling more than 𝑘𝑟−1 and at most 𝑘𝑟 laps  
(i.e. that of all passengers with fare 𝑥𝑟) is  

 ∑ 𝑅𝑖𝑢𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1 = ∑ 𝑅𝑖(𝑥𝑟 − 𝑡𝑖)2

𝑘𝑟
𝑖=𝑘𝑟−1+1  (7) 

Total unfairness to all passengers on the considered line can be calculated as follows: 

 𝑈(𝑥1, 𝑥2, … , 𝑥𝐾) = ∑ ∑ 𝑅𝑖(𝑥𝑟 − 𝑡𝑖)2
𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1   (8) 

Our next goal is to determine the given number 𝐾 and fixed numbers 

 0 = 𝑘0 < 𝑘1 < 𝑘2 <  … < 𝑘𝐾 = 𝑛 − 1 (9) 
representing tariff regions (𝑘𝑟−1,𝑘𝑟〉, 𝑟 = 1,2, … ,𝐾 fares 𝑥1,𝑥2, … , 𝑥𝐾 which minimize the total 
unfairness to all passengers. A necessary constraint is to retain unchanged the total income on the 
considered line. This leads to the following mathematical problem: 
Minimize 
 𝑈(𝑥1, 𝑥2, … , 𝑥𝐾) = ∑ ∑ 𝑅𝑖(𝑥𝑟 − 𝑡𝑖)2

𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1                                                   (10) 

subject to  
 ∑ 𝑥𝑖𝑅𝑖𝑘

𝑖=1 = ∑ ∑ 𝑥𝑟𝑅𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1                                                               (11) 

 
 
This formulation is a constrained extreme problem solvable by the Lagrange Multiplier Method. 



On a fair manifold fare rating on a long traffic line  7 
 

The next procedure of minimizing (1) subject to (2) is slightly technical and a reader who is not 
interested in the mathematical solution can skip to formulas (7) and (8) expressing optimum fare and 
minimal total unfairness. 

Denote 
 𝐹(𝑥1, 𝑥2, … , 𝑥𝐾 , 𝜆) = 𝑈(𝑥1, 𝑥2, … , 𝑥𝐾) − 𝜆�∑ ∑ 𝑥𝑟𝑅𝑖

𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1 − ∑ 𝑡𝑖𝑅𝑖𝑛−1

𝑖=1 � (12) 
 

𝐹(𝑥1, 𝑥2, … , 𝑥𝐾 , 𝜆) = ∑ ∑ 𝑅𝑖(𝑥𝑟 − 𝑡𝑖)2
𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1 − 𝜆�∑ ∑ 𝑥𝑟𝑅𝑖

𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1 − ∑ 𝑡𝑖𝑅𝑖𝑛−1

𝑖=1 �(13) 

Formula (1) for 𝑈(𝑥1, 𝑥2, … , 𝑥𝐾) defines a differentiable function on 𝑅𝐾 (where 𝑅is the set of all 
real numbers). The Lagrange Multipier Theorem asserts that if 𝑈(𝑥1, 𝑥2, … , 𝑥𝐾)achieves a minimum 
on R2 subject to (2), then the minimum is necessarily achieved at a point where all partial derivatives 

𝜕𝐹(𝑥1,𝑥2, … , 𝑥𝐾 , 𝜆)
𝜕𝜕 = 0   and   

𝜕𝐹(𝑥1,𝑥2, … , 𝑥𝐾 , 𝜆)
𝜕𝑥𝑟

= 0   for all 𝑟 = 1,2, … ,𝐾 . 

Let us see where the Lagrange Multiplier method tells us to look for an optimal solution. It holds that: 
 

𝜕𝜕(𝑥1,𝑥2, … , 𝑥𝐾 , 𝜆)
𝜕𝜕

= �� � 𝑥𝑟𝑅𝑖

𝑘𝑟

𝑖=𝑘𝑟−1+1

𝐾

𝑟=1

−� 𝑡𝑖𝑅𝑖

𝑛−1

𝑖=1

� = �𝑥𝑟 � 𝑅𝑖

𝑘𝑟

𝑖=𝑘𝑟−1+1

𝐾

𝑟=1

−� 𝑡𝑖𝑅𝑖

𝑛−1

𝑖=1

= 0     (14) 

 
 𝜕𝜕(𝑥1,𝑥2,…,𝑥𝐾,𝜆)

𝜕𝑥𝑟
= 2∑ 𝑅𝑖

𝑘𝑟
𝑖=𝑘𝑟−1+1

(𝑥𝑟 − 𝑡𝑖) − 𝜆∑ 𝑅𝑖 = 0 𝑘𝑟
𝑖=𝑘𝑟−1+1  (15) 

It follows from equation (15): 

𝜕𝜕(𝑥1, 𝑥2, … , 𝑥𝐾 , 𝜆)
𝜕𝑥𝑟

= 2𝑥𝑟 � 𝑅𝑖

𝑘𝑟

𝑖=𝑘𝑟−1+1

− 2 � 𝑅𝑖𝑡𝑖

𝑘𝑟

𝑖=𝑘𝑟−1+1

− 𝜆 � 𝑅𝑖

𝑘𝑟

𝑖=𝑘𝑟−1+1

= 

 = (2𝑥𝑟 − 𝜆)∑ 𝑅𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1 −  2∑ 𝑅𝑖𝑡𝑖

𝑘𝑟
𝑖=𝑘𝑟−1+1 = 0                                  (16) 

the solution of (5) is as follows: 

 𝑥𝑟 =
∑ 𝑅𝑖𝑡𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

∑ 𝑅𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

+ 𝜆
2
                                                                       (17) 

Substitution for 𝑥𝑟 from (17) into equation (14) gives 
 
 ∑ 𝑥𝑟 ∑ 𝑅𝑖

𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1 − ∑ 𝑡𝑖𝑅𝑖𝑛−1

𝑖=1 = ∑ ∑ 𝑅𝑖𝑡𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1 + 𝜆

2
∑ ∑ 𝑅𝑖

𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1 −

∑ 𝑡𝑖𝑅𝑖𝑛−1
𝑖=1 == ∑ 𝑡𝑖𝑅𝑖𝑛−1

𝑖=1 + 𝜆
2
∑ ∑ 𝑅𝑖

𝑘𝑟
𝑖=𝑘𝑟−1+1

𝐾
𝑟=1 − ∑ 𝑡𝑖𝑅𝑖𝑛−1

𝑖=1 = 𝜆
2
∑ 𝑅𝑖𝑛−1
𝑖=1 = 0 (18) 

 
It follows from the last equation that 𝜆 = 0, and therefore it holds for optimum fares 𝑥𝑟∗ minimizing 

total unfairness 

 𝑥𝑟∗ =
∑ 𝑅𝑖𝑡𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

∑ 𝑅𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

for 𝑟 = 1,2, … ,𝐾                                                (19) 

To guarantee that the function 𝑈�𝑥1,𝑥2,…,𝑥𝐾� achieves minimum at point (𝑥1∗, 𝑥2∗, … , 𝑥𝐾∗ ) (19), it is 
necessary to show that all following second partial derivatives are greater than zero. 

Indeed, it holds that: 

 𝜕𝜕(𝑥1,𝑥2,…,𝑥𝐾,𝜆)
𝜕𝑥𝑟2

= 2∑ 𝑅𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1 > 0,           𝑟 = 1,2, … ,𝐾  (20) 

 
However, fares given by formula (19) are optimal for fixed tariff range borders  
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 0 = 𝑘0 < 𝑘1 < 𝑘2 <  … < 𝑘𝐾 = 𝑛 − 1 (21) 
and corresponding total unfairness is 

 𝑈∗ = 𝑈∗(𝑘1,𝑘2, … ,𝑘𝐾) = ∑ 𝑅𝑗𝑢𝑗 =𝑛−1
𝑗=1 ∑ ∑ 𝑅𝑗 �

∑ 𝑅𝑖𝑡𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

∑ 𝑅𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

− 𝑡𝑗�
2

                 𝑘𝑟
𝑗=𝑘𝑟−1+1

𝐾
𝑟=1 (22) 

 
The second step of our proposed procedure is to find numbers 0 = 𝑘0 < 𝑘1 < 𝑘2 <  … < 𝑘𝐾 =

𝑛 − 1 for which is 𝑈∗ = 𝑈∗(𝑘1,𝑘2, … ,𝑘𝐾) minimal. 
Notice that the optimum 𝑥𝑟 depends only on the boundaries of the 𝑟-th tariff region and numbers of 

passengers belonging to this region. 
Let us define an acyclic digraph 𝐺 = (𝑉,𝐴,𝐶) with vertex set defined as 

 𝑉 = {(0,0), (𝐾, 𝑛)} ∪ {(𝑟, 𝑖)  | 𝑟 = 1,2, … ,𝐾 − 1,      𝑖 = 1,2, … ,𝑛 − 1} (23) 
and arc set 
 𝐴 = ��(𝑟, 𝑖)(𝑟 + 1, 𝑗)��(𝑟, 𝑖) ∈ 𝑉, (𝑟 + 1, 𝑗) ∈ 𝑉, 𝑖 < 𝑗� (24) 

The arc cost is defined as follows: 
 𝑐�(0,0)(1, 𝑗)� = 0   (25) 

 𝑐�(𝑟, 𝑖)(𝑟 + 1, 𝑗)� = ∑ 𝑅𝑗 �
∑ 𝑅𝑖𝑡𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

∑ 𝑅𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

− 𝑡𝑗�
2

𝑘𝑟
𝑗=𝑘𝑟−1+1  (26) 

Let us note that the cost of the arc �(𝑟, 𝑖)(𝑟 + 1, 𝑗)� is the total unfairness to all passengers 
travelling more than 𝑘𝑟−1 and at most 𝑘𝑟 laps. 

 

 
a        b 

 
Fig. 1. a) Digraph = (𝑉,𝐴,𝐶), b) A path in 𝐺corresponds to 5 tariff region boundaries 𝑘1 = 6, 𝑘2 = 10, 𝑘3 =

 14, 𝑘4 = 17, 𝑘5 = 20 
 

Every path form vertex (0,0) to vertex (𝐾,𝑛) in digraph 𝐺 = (𝑉,𝐴,𝐶) is in the form  

 (0,0), (1,𝑘1), (2,𝑘2), … , (𝐾 − 1,𝑘𝐾−1), (𝐾, 𝑛) (27) 
with the following length 
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0 + �𝑅𝑗 �
∑ 𝑅𝑖𝑡𝑖
𝑘1
𝑖=1

∑ 𝑅𝑖
𝑘1
𝑖=1

− 𝑡𝑗�
2𝑘1

𝑗=1

+ � 𝑅𝑗 �
∑ 𝑅𝑖𝑡𝑖
𝑘2
𝑖=𝑘1+1

∑ 𝑅𝑖
𝑘2
𝑖=𝑘1+1

− 𝑡𝑗�
2𝑘2

𝑗=𝑘1+1

+ 

+∑ 𝑅𝑗 �
∑ 𝑅𝑖𝑡𝑖
𝑘3
𝑖=𝑘2+1

∑ 𝑅𝑖
𝑘3
𝑖=𝑘2+1

− 𝑡𝑗�
2

𝑘3
𝑗=𝑘2+1 … + ∑ 𝑅𝑗 �

∑ 𝑅𝑖𝑡𝑖
𝑘𝐾
𝑖=𝑘𝐾−1+1

∑ 𝑅𝑖
𝑘𝐾
𝑖=𝑘𝐾−1+1

− 𝑡𝑗�
2

𝑘𝐾
𝑗=𝑘𝐾−1+1 =

∑ ∑ 𝑅𝑗 �
∑ 𝑅𝑖𝑡𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

∑ 𝑅𝑖
𝑘𝑟
𝑖=𝑘𝑟−1+1

− 𝑡𝑗�
2

=𝑘𝑟
𝑗=𝑘𝑟−1+1

𝐾
𝑟=1 𝑈∗(𝑘1,𝑘2, … ,𝑘𝐾)  (28) 

The shortest path from vertex (0,0) to vertex (𝐾,𝑛) determines a series 

 0 = 𝑘0 < 𝑘1 < 𝑘2 <  … < 𝑘𝐾 = 𝑛 − 1 (29) 
which minimizes total unfairness 𝑈∗(𝑘1,𝑘2, … ,𝑘𝐾). We have just reduced the problem of minimizing  
𝑈∗(𝑘1,𝑘2, … ,𝑘𝐾)  to a shortest path problem in diagraph 𝐺 = (𝑉,𝐴,𝐶). 
 
 
3. EXPERIMENTS 
 

We have used real data from public transport in the Slovakian town of Martin to compute optimum 
manifold fares. The public transport system in Martin serves circa 40,000 passengers in one working 
day. The longest trip has 26 bus stops and the histogram of traveling distance (number of traveling 
laps) is shown in Fig. 2. 

 

 
 
Fig. 2. Histogram of traveling distances of passengers in Martin 
 
3.1. Ideal fare 
 

We have exactly 40,409 sold tickets in our dataset and the price of a basic ticket in Martin for a 
single tariff public transport system is 0.60 € today. Total receipts without discount amounted to 
24,245.40 €. Suppose fixed and variable costs are divided in the ratio of 50:50; the ideal fare for a 
passenger 𝑖 traveling 𝑑𝑖 loops can be computed using the formula𝑡𝑖  =  0.30 + 0.0426𝑑𝑖. 
 
3.2. Optimal manifold fares 
 

The proposed algorithm was implemented in the C# programming language using Microsoft Visual 
Studio. The LabelSet algorithm was used to search for an optimal solution as the shortest path in the 
directed graph of zone strategies. Optimal results for the public transport of Martin with 2, 3, 4 and 5 
zones are shown in Table 1. 
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Table 1 
Optimal manifold fares 

 

Number of tariff 
regions 

Tariff 
region Laps Fare Unfairness 

2 
1 1 – 8 0.50 € 

407.9 
2   9 – 26 0.80 € 

3 
1 1 – 5 0.44 € 

201.2 2   6 – 10 0.63 € 
3  11 – 26 0.87 € 

4 

1 1 – 4 0.42 € 

119.9 
2 5 – 8 0.57 € 
3   9 – 13 0.75 € 
4  14 – 26 0.98 € 

5 

1 1 – 3 0.39 € 

  77.1 
2 4 – 6 0.51 € 
3 7 – 9 0.64 € 
4 10 – 13 0.78 € 
5 14 – 26 0.98 € 
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