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INFLUENCE OF IMPLEMENTATION OF TECHNOLOGICALLY
ADVANCED EVACUATION MODELS ON THE PROCESS OF
DECREASING THE RISK DURING ACCIDENTS IN AN LNG TERMINAL

Summary. The continuing growth of the LNG (liquid natural gas) industry has led to a
rapid increase in the construction of LNG terminals and the need for accurate risk
assessment models as accidents involving LNG are potentially hazardous and pose a
major threat. One aspect of risk modeling - evacuation of people to the safe zones of an
LNG terminal - is a complex problem that has yet to receive sufficient attention. The aim
of this paper is to illustrate how the implementation of a technologically advanced
evacuation model may decrease risk during potential accidents in an LNG terminal.

1. INTRODUCTION

From 1878 to 2014, 1,100 energy-related accidents occurred, resulting in more than 210,000
human fatalities and reaching almost $350 billion in property damages [1]. Some of these data include
accidents in the LNG industry, the use of which is increasing along with the generally expanding need
for energy in the world. An LNG terminal accident is potentially a very hazardous event and risk
assessment including the timely evacuation of people, although complex, is of crucial importance.
According to the National Fire Protection Association - NFPA 59A (Standard for the Production,
Storage, and Handling of Liquefied Natural Gas), at least two accesses must be provided in each
protective enclosure and be located to minimize the escape distance in the event of emergency [2]. The
Fire Protection Handbook of National Fire Protection Association - NFPA, as a factor that contributes
injury lists Escaped difficulties, such as choosing in appropriate exit route [3]. The European Standard
EN 1473 “Installation and equipment for liquefied natural gas — Design of onshore installations” states
that the escape routes shall be laid out to encourage an intuitive response from personnel to lead them
from high-hazard areas to low-hazard areas and shall consider that there may be panic in an
emergency situation [4]. In such situations, the probability of selection of the wrong escape route by
individual is brought up to a maximum. Occupational Safety and Health Administration (OSHA)
standards explicitly require employers to have emergency action plans for their workplaces.

According to their Principal Emergency Response and Preparedness Requirements and Guidance,
Emergency action plans, at a minimum, must include escape procedures and escape routes [5]. The
selection of an escape route by an individual who does not have all the information on the external
influences on the accident is too complex.

Vanem [6] have carried out analyses of accidents with LNG tankers where the risk models include
the success levels of the evacuation. Tanabe and Miyake [7] have focused their research on the
influences on the risk reduction concept on the basis of design criteria for emergency systems for LNG
plants. The multi-year progress of hazard warning systems is described by Sorensen [8] and indicates a
lack of research into evacuations to safe harbors as a protective action. There are an extensive number
of studies that show comparable results of different known modeling softwares referring to LNG leak
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accidents. The significant conclusion is that such programs demand a great deal of time to initiate to
analyze an actual or even a current incident [9]. Safety analyses include evacuation as a factor for
mitigation of the consequences of an accident. The need for the development of structural measures
for disaster risk reduction, which includes evacuation, indicates that special attention should be paid to
this type of evasive action, which has not been the case so far in terms of LNG terminals. The creation
of a database with information on the extent of the gas dispersion that links the zones of the LNG
terminal, depending on the time spent after the occurrence of the accident, is of crucial importance for
a rapid safety reaction. The creation of safe evacuation routes available at the time of the accident is
essential and solves the previously mentioned weaknesses.

The following will present and detail the significance of advanced evacuation models during their
incorporation into safety analyses.

2. EVACUATION

The conservative approach during the application of risk analyses in the case of an accident
involving LNG leakage and dispersion of the gas assumes that the effects on the people near the
accident may be different— lesser— than previously presumed. This is not just due to the uncertainties
in modeling incident outcomes or modeling limitations that may lead to conservative assumptions and
results, but also certain factors such as topography and physical obstruction, although especially the
evasive actions taken by people.

Some of the possible evasive actions are evacuation, escape, sheltering, and medical treatment [10].
Evacuations occur frequently. People are evacuated from their homes, businesses, ships, etc., in
response to actual or predicted threats of hazards such as hurricanes, floods, tsunamis, volcanic
eruption, and release of hazardous or nuclear materials, fires, and explosions [11]. Evacuation is a way
of increasing the distance between the population and a hazard, and is the main counter measure to
toxic chemical releases. Evacuation describes the extraction of persons from a specific area because of
a real or an anticipated threat or hazard.

During the last decade, the warning process and response, organizational response, behavior in
evacuations, evacuation planning, and management have been more in focus than in the past. The
stress has been on the quality of information, the timing of message delivery, and the level of
compliance with warnings.

While analyzing evasive actions when an LNG accident is in question, the terms evacuation and
escape may be merged and called “escape through technologically advanced evacuation’.

Where there is difficulty in identifying an escape route to a safe haven, the probability of escape
during a sudden release of LNG from an LNG vessel is very low. Prugh (1985) [12] illustrates the
effectiveness of evacuation as a function of the warning time, area to be evacuated, and the density of
the population. This chart may be used to identify the efficiency of the evacuation for various large
scale releases, including LNG releases, where sheltering at the location is less desirable. Escape using
technologically advanced evacuation was developed and described [13]. This method uses QRA
(quantitative risk analysis) to create a database and to gain experiences for a specific LNG terminal
and its environment, with the objective to set the logic used by the managing computer device that
uses Fuzzy logic [14 - 16] in the process of determination (in real time) of the fastest and safest
evacuation route for an individual. The behaviour of the evaporated natural gas from the LNG pool
may be calculated using a Fire Dynamics Simulator (FDS) on the basis of Computational Fluid
Dynamics (CFD) modeling of the dispersion of the natural gas into the surrounding environment [17 -
21]. An extensive number of analyses are carried out and graphically presented using the DNV
PHAST Risk and Safety program, which was used to simulate the consequences of the dispersion of
natural gas, including individual and societal risks [22, 23]. In addition, through the use of these
programs, the impact of the LNG leak accident can be analyzed and linked depending on the time that
has passed since the accident. This model of advanced evacuation (which falls under the previously
indicated escape through the technologically advanced evacuation category) plays a definitive role in
the degree of success of an evacuation and is expressed through the decrease of the percentage of
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individuals who have not been evacuated; i.e., an increase in the percentage of successful escapes.
This directly reflects on P, ; (probability of fatality), resulting in its decrease. Another very crucial

consideration is that with the technologically advanced evacuation, people located in the LNG
terminal are evacuated as a group through the evacuation routes created for each individual separately
(Fig. 1) as opposed to the usual evacuations intended for a group of people (Fig. 2). This means that in
advanced evacuation, each location on the terminal has a predefined and calculated evacuation way
based on potential consequences magnitudes and could vary based on the type of consequences.
Classical evacuation procedures are usually fixed and based on architectural properties of the place or
building.
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Fig. 1. Advanced evacuation

EXIT

Fig. 2. Usual evacuation

3. PROBABILITY OF FATALITY

With the objective to simplify the process of the calculation of individual and social risk, the value
referring to the probability of fatality is set at O or 1. The probability of fatality, presented graphically,
is in the form of a curve. See Fig. 3.
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Fig. 3. Probability of fatality
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If the conservative approach of determination of the probability of fatality is to be excluded, the
same varies depending on the remoteness of the accident and its influence, with a value ranging
between 0 and 1. The probability of fatality in a situation in which a technologically advanced
evacuation model is in place is in direct correlation to the safe time or difference between the time
needed for the individual to reach the safe zone and the time needed for the impact of the accident to
reach the final foreseen limit or point. The greater the difference, or the greater the safe time, the
greater the probability for the individual to reach the safe zone without being impacted by the accident.
Optimally, the value of the probability of fatality is decreasing.

Fig. 4 shows the location of an accident with LNG leakage, the standardized location of work of
the employees in the terminal, as well as a safe area in which the impact of the accident is down to
zero.

“ . Safe area

Fig. 4. Accident, employees, dangerous, and safe area

Point A represents the location of the accident. The probability of fatality in the zone of Point A
has a value of 1. Points B and C represent accurately determined locations of the employees in the
LNG terminal, where the value for the probability of fatality for these two points would range between
0 and 1 (under a conservative approach of determination of the probability of fatality, the zone in
which B and C are located would have a value of 1). Point E represents the target or the objective to be
reached, located in an area where the impact of the accident equals 0.

The dependency of the probability of fatality on the safe time as an example is shown in Fig. 5.
This method of determining the probability of fatality enables the identification of a more realistic
value of the probability of fatality, in reference to the conservative principle, having the value 0 or 1.

The use of a technologically advanced evacuation model represents a guarantee that these time
calculations and differences are applicable in real/actual cases. This will influence the previously
stated time difference, decreasing the probability of fatality. Consequently, all of this will also
influence the Individual Risk and the Societal Risk by moving the F-N curve to a more acceptable
position in the ALARP (As Low As Reasonably Practicable) zone.

All of this enables the technologically advanced evacuation model to be widely accepted as an
evasive action to be used with the objective of mitigation of the consequences of accidents.

4. RISK CALCULATION

The objective of performing the QRA is to identify the potential impact of an LNG leakage
accident on the workers in the terminal as well as on the population near the terminal. Risk
calculations include calculations of individual risk and societal risk [24].

Individual risk (IR) is the frequency at which an individual may be expected to sustain a given
level of harm from exposure to specified hazards. The calculation of IR at a location near an LNG
plant or inside an LNG plant assumes that the contributions of all incident outcome cases are additive.
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The total IR at each point is equal to the sum of the individual risks at that point of all of the incident
outcome cases associated with the plant.

IR, = Z IR, (1)
i=1
IR, ,; = fi - Py, (2)

0 100 200 300 400 500
Safe fime (s)

Fig. 5. Dependence of the probability of fatality (P;) on the safe time

Where ( f, - Frequency of incident outcome casei); (P;; - Probability of fatality for incident
outcome casei) (x y - Geographical location); (- Incident outcome case), (, -Total number of

incident outcome cases considered in the analysis).
Societal risk is the relationship between the frequency and the number of people suffering from a
specified level of harm in a given population from the exposure to specified hazards. A common form
of societal risk is an F-N curve (frequency-number) and is the plot of cumulative frequency versus the

number of fatalities.
N, =>P,, Py, @)
X,y

where (N; - Number of fatalities resulting from incident outcome); (P, , - Number of people at

the geographical location X, Y ); (P, ; - Probability of fatality).
Fy=2F @)

for all incidents outcome case i for which N, > N
(F, - Frequency of all incident outcome cases affecting N or more people)
(F, - Frequency of incident outcome casel)

5. EXAMPLE OF A RISK CALCULATION PROBLEM

The following section will review the model of an LNG terminal in a case in which there is an
accident on a moored LNG tanker with leakage of LNG over the water. The LNG leakage accident is
considered to be a consequence of intentional breach.
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The area around the accident according to SANDIA [25] may be divided into three impact zones:
Zone 1 is a distance up to 500m from the accident in which the probability of fatality for all present
individuals is 1. Zone 2 is a distance ranging from 500 to 1600 meters from the accident. In this case,
two options will be reviewed for interpretation of the probability of fatality (Case 1 — 1 or 0; Case Il -
values between 0 and 1). Zone 3 is a distance greater than 1600m from the center of the accident,
where the probability of fatality will have a value of 0.

The risk calculation was applied to a simple example, with the goal of making the calculations
easily comparable; the final results (F-N curve) will be presented with an option where the evacuation
is not incorporated into the calculations (Case I) and an option by (F-N curve) incorporating an

advanced evacuation with a real/actual approach with a determination of P, ; (Case I1).

The risk assessment was performed for an LNG terminal at a time of an accident on an LNG carrier
during the process of offloading. In this case, highly simplified results for frequency, probability, and
consequence and effect estimation will be used.

This sample calculation applies the following conditions:

All hazards originate at a single point;

The atmospheric stability class and wind speed are always the same. Half of the time, the wind
blows from the south and half of the time the wind blows from the north;

The people are located inside the LNG terminal. Their locations will be presented later in the
example;

The probability of fatality from a hazardous incident at a particular location is: for Case | (either 0
or 1) and for Case Il (between 0 and 1).

The incident outcome from the accident of the LNG carrier is the release of the LNG onto the water
[26]. In this case, the event tree logic model (Fig. 6) will be used to determine additional possible
outcomes and to estimate the frequency for the incidents. For this example, only two outcomes are
assumed to occur. If the vapour cloud from the LNG released ignites, there is a pool fire. If the vapour
cloud does not ignite, the result is vapour cloud downwind dispersion from the release point.

For this example, it is assumed that the frequency for the Incident is 3*10™ events per year and
the ignition probability is around 33% [24]. The wind blows toward north 50% of the time, while it
blows toward south 50% of the time. The following Fig. 6 shows the Frequency estimates for the
example incident.

Ignition —6
— & Pool fire — e
— J(1A) = 9.9 =10
I LNG flammable
vapour doud
_c 181 Vapour cloud B
f=3=10"" dispersion o north f(IB1)=1%10"3
Prob.=0,5
|B Mo ignition
Pmb.=067

182 Vapour cloud

| dipemionmzouh  f(JB2) =1%107°

Prob=10,5

Fig. 6. Frequency estimates for the example incident

The very simple impact zone (Fig. 7) estimates for the identified incident outcome cases will be
defined:
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Case | and Case II: Incident outcome case IA (pool fire) - the pool fire is centered at the mid-point
of the LNG carrier. All persons within 500 meters of the pool fire center are killed (probability of
fatality = 1). All persons beyond this distance are unaffected (probability of fatality = 0).

Case I: Incident outcome cases IB1 and IB2 (LNG vapour cloud dispersion) — all persons in the
pie-shaped (90 degrees) segment of a radius of 1600 meters downwind are killed (probability of
fatality = 1). All persons outside this area are unaffected (probability of fatality = 0).

Case I1: Incident outcome cases IB1 and 1B2 (LNG vapour cloud dispersion) — all persons in the
pie-shaped (90 degrees) segments of a radius of 1600 meters downwind are injured or unaffected
(probability of fatality = between 0 and 1). All persons outside this area are unaffected (probability of
fatality = 0).

5.1. Case | — The evacuation is not included in the calculation

Fig. 7 shows the impact zones from the incident.

| 1B

MNarth

South B2

Fig. 7. Impact zones

Fig. 8 shows the number and location of people in the area surrounding the LNG terminal (Case I).
The total individual risk of fatality at each geographical area is determined by adding the IR from all
incident outcome case impact zones that affect that area.

X

Fig. 8. Number of people and their location for Case |
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The maximum IR is the highest value of IR in any geographical area (Table 1).

Individual risk of fatality in each geographical area for Case |

Incident
Area fi (per year) Ps IR; (per year)
outcome case
IA 9.9 x10°° 1 9.9x%107°
A IB1 1%107° 1 1%1073
YIRi = 1,99 * 107>
IA 9.9 % 107° 1 9.9 x107°
B IB2 1%107° 1 1%107°
YIRi = 1,99 * 10~°
IB1 1%1073 1 1%1073
C
YIRi=1%107>
IB2 1%1073 1 1%1073
D
YIRi=1%107>
IA 9.9 % 107° 1 9.9 x107°
E
SIRi =9.9 % 107
IA 9.9 % 107° 1 9.9 x107°
F
SIRi =9.9 % 107

Table 1

During the societal risk estimation, the first step while generating the F-N curve is to calculate the
number of fatalities as a result of every incident outcome case (Table 2). The next table (Table 3)
summarizes the cumulative frequency results. Those data are plotted to obtain the societal risk F-N

curve (Fig. 9).
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Frequency

Estimated number of fatalities for Case |

Incident Frequency per Estimated
outcome case | ea.—y P number of
Y fatalities
IA 9.9 % 107° 28
IB1 1%107° 50
B2 11075 12

Cumulative frequency results for Case |

Estimated
Incident Total frequency
number of
outcome case per year
fatalities
12+ IA,IB1,1B2 2,99 % 1075
28+ IA,IB1 1,99 x 1075
50+ IB1 1%107°
>50+ none 0
FN curve - Case |
0,000035
0,00003
0,000025
0,00002
0,000015
0,00001
0,000005
0
0 10 20 30 40

Number of fatalities

= FN curve - Case |

50

60

Table 2

Table 3

Fig. 9. F-N curve for Case |
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5.2. Case Il results — Advanced evacuation with actual access of determination of P,

In Case Il, the frequency analysis remains the same. Fig. 9 shows the number and location of
people in the area surrounding the LNG terminal (Case I1).

S
-

Fig. 10. Number of people and their location for Case Il

The maximum IR is the highest value of IR in any geographical area (Table 4).

The final value of the probability of fatality for IB1 is obtained as the mid-value of the probability
of fatality for all locations from IB1 where people are located. The individual probability of fatality for
the people in IB1 and IB2 is determined in Fig. 5 according to their estimated safe time.

While generating the F-N curve during the societal risk estimation, the objective is to calculate the
number of fatalities as a result of every incident outcome case (Table 5) and to summarize the
cumulative frequency results (Table 6). Those data are plotted to obtain the societal risk F-N curve

(Fig. 11).

FN curve - Case ll

0,000035
0,00003
0,000025
0,00002
0,000015
0,00001
0,000005
0

Frequency

0 10 20 30 40

Number of fatalities

= FN curve - Case Il

Fig. 11. F-N curve for Case Il
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Individual risk of fatality in each geographical area for Case Il

Area oulzg::(:r::tase fi (per year) Ps IRi(per year)
IA 9.9 x107° 1 9.9x107°
A IB1 1%1075 0,57 5,7+ 107°
YIRi = 1,56 * 10~°
IA 9.9 %107° 1 9.9x107°
B IB2 1%107° 0,6 6107
YIRi = 1.59 x 107>
1B1 1%107° 0,57 5,7 x107°
‘ YIRi =5,7 x107°
IB2 1%107° 0,6 6107
° YIRi = 6x107°
IA 9.9x107° 1 9.9x107°
; YIRi =9.9%107°
IA 9.9+ 107° 1 9.9x107°
j YIRi =9.9%107°

Estimated number of fatalities for Case Il

Incident Frequency per Estimated
outcome case | eary P number of
Y fatalities
1B1 1%107° 37
IB2 1%107° 3

Table 4

Table 5
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Table 6
Cumulative frequency results for Case 11
Estimated .
Incident Total frequency
number of outcome case er year
fatalities pery
8+ IA,IB1,IB2 2.99 107>
28+ IA,1B1 1.99 * 105
37+ IB1 1%107>
>37+ none 0
0,000035
0,00003
A Casel
0,000025
§ 0,00002
1]
=]
o
© 0,000015
0,00001
Case ll
0,000005
0
0 10 20 30 40 50 60
Number of fatalities
= FN curve - Case | ———FN curve- Case |l

Fig. 12. Comparison of F-N curves for Case | and Case Il

The objective of the development and use of the technologically advanced evacuation model is the
forecasted removal of the people from hazardous areas to safe zones. A successful evacuation is
expressed through the presentation of the realistic or the actual value of the probability of fatality
(between 0 and 1). The influence on the F-N curve can be seen in Fig. 12 (F-N curves for Case | and
Case Il), where the F-N curve for Case Il has a more acceptable positioning in the F-N area than in
Case I.

6. CONCLUSION

The development of the technologically advanced evacuation model aimed for people both in and
near LNG terminals, which could be used in situations of LNG leakage accidents, provides the
possibility of eliminating potential errors during the selection of evacuation routes by an individual or
a group of people. In addition, the determination and creation of the evacuation route that is
considered the shortest and the safest decreases the probability of fatality. The difference during the
use of the probability of fatality with a conservative approach during the determination of the value (0
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or 1) and, on the other hand, the conservative but sufficiently realistic selection of the value for the
probability of fatality (between 0 and 1) is quite evident and we present both using a simple example.
A high-quality, accurately defined technologically advanced evacuation model should eliminate any
underestimation of the value of the probability of fatality as well as ensure that this approach to the
execution of risk analyses will provide conservative but at the same time more realistic values.
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