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IMPROVEMENT OF WORKING CONDITIONS OF THE FREIGHT 

LOCOMOTIVE RUNNING GEAR 
 

Summary. To improve the working conditions of the electric locomotive running part, it is 

necessary to decrease unsprung masses, lateral loads and the angle of attack and provide the 

third body with proper tribotechnical properties. A new scheme of the freight electric 

locomotive running gear is elaborated in the work, which ensures a decrease of unsprung 

masses, relative sliding of a wheel on the rail and an angle of attack that provides resistance 

to the destruction of the third body in the contact zone. 

 

 

 

УЛУЧШЕНИЕ УСЛОВИЙ РАБОТЫ ХОДОВОЙ ЧАСТИ ГРУЗОВОГО 

ЛОКОМОТИВА 

 
Аннотация. Для улучшения условий работы ходовой части электровоза зону 

контакта колеса и рельса  необходимо уменьшить необрессоренные массы, 

поперечные силы и угол атаки и обеспечить наличие третьего тела с необходимыми 

триботехническими свойствами. В работе приведена новая схема ходовой части 

грузового электровоза, которая позволяет уменьшить относительную скорость 

скольжения колеса по рельсу и угол атаки, что повышает устойчивость третьего тела к 

разрушению. 
 

 

1. INTRODUCTION 

 

Significant financial resources are expended annually on railway infrastructure and equipment for their 

efficiency. The freight locomotives are characterized by limited speed, simplicity of the running gear and 

relatively high power. The steering of wheels on the track is performed by the wheel and rail profiles 

automatically. Wheel movement on the rail is accompanied by relative sliding and great lateral forces 

which have a negative influence on the derailment, various kinds of damage intensity of wheels and rails, 

the rolling resistance and energy consumption, environmental pollution by vibrations and noise [1-4]. 

Variation of the wheel-rail cohesive and tractive forces stipulates alteration of the stick-slip movement of 

the tread surfaces with various frequencies. In general, the similar process takes place in the conditions of 

heavy loaded rolling/sliding frictional contact when the destruction of the third body leads to the 

alteration of the instantaneous increase of their cohesive force and subsequent sliding. This, in spite of the 

mailto:ge.tumanishvili@gmail.com


104  G. Tumanishvili, T. Natriashvili, G. Goletiani, V. Zviadauri, T. Nadiradze 

 
limited speed (there has been a number of attempts to increase it), contributes to the alteration of the 

shearing forces, fatigue and adhesive wear and the damage rate of the locomotive running gear and track. 

The permanent heavy axial load, increased velocities and torques, steering and lateral forces and creep, as 

well as the track relief, radii of curves, incompatibility of the wheel and rail profiles, thermal action of the 

brake shoes on the wheel tread surfaces, etc., have negative influence on the working conditions of the 

freight locomotive running gear and especially wheels and rails. 

Many attempts to improve the freight locomotive running gear are known. 

 Decrease of unsprung masses of the electric locomotive running gear is effective, but because of 

structural complexity it is only used on the high-speed passenger locomotives. 

 Improvement of the wheel profiles because of the wear process, plastic deformations and wear, gives a 

short-term effect. 

 Lubrication of the wheels and rails and their thermo-chemical treatment do not always have the 

expected effect. 

As the theoretical, experimental and exploitation researches have shown, among the ways of 

improvement of the running gear working conditions, the most rational one is decrease of creep, lateral 

forces, unsprung masses, and modification of interacting surfaces of wheels and rails. 

 

 

2. PECULIARITIES OF THE MOVEMENT AND DAMAGEABILITY OF THE WHEEL -

SETTING THE STRAIGHTS AND CURVES 

 

Locomotive wheels, unlike freight wagon wheels, undergo driving torques. It is the additional source 

of the relative sliding velocity of interacting surfaces and skidding in extreme conditions. The movement 

of the wheel is not rectilinear in the straights and it is possible the interaction of the wheel flange with the 

rail gauge is accompanied with slight creeping (Fig. 1 a). In curves the flange or flange root of the first 

outer wheel of locomotive is first interacting with the rail gauge and because of great lateral force (which 

has the order of magnitude as the normal load and mainly depends on velocity and masses) receives the 

due orientation towards the rail at which the angle of attack, lateral force and movement resistance 

increases (Fig. 1 b). 

 

 
 

                                                    a                                                   b 
Fig. 1. Movement of the wheel-set in straight a) and in curve b) 

Рис. 1. Движение колёсной пары по прямому a) и кривому b) участкам 

 
As the length of an external branch of the rail is more than the internal one and the angular velocities 

of the wheels are equal, in spite of the conical form of tread surfaces of wheels, the outer wheel will lag 

from the inner, the angle of attack will increase and the only way of re-establishment of the initial state is 

sliding of the inner wheel on the rail in the direction of the opposite movement. (As the lateral force and 

the contact area between tread and flange surfaces for the outer wheel are more than the ones for the inner 
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wheel, the force of forward sliding of the outer wheel on a rail is more than the force of the backward 

sliding of the inner wheel). Unless it happens so the outer wheel can elevate on the rail and derail. 

Because of great lateral forces and unsprung masses, the seizure of the surfaces will also be great and the 

irrupture will occur instantly, which leads to the generation of vibrations (Fig. 2), causing various kinds of 

surface destruction [5]. 

 

 
Fig. 2. Movement of wheel-set in curve and slipping of inner wheel 

Рис. 2. Движение колёсной пары по кривому пути и проскальзывание внутреннего колеса 

 

For the rail head-wheel tread contact, the sliding velocity and the contact pressure is about 0.1 m/sec 

and 1.5 GPa, respectively, but for the rail gauge-wheel flange the maximum sliding velocities reach 0.9 

m/sec, and the maximum contact pressure was observed up to 2.7 Gpa [6]. In such conditions the main 

kinds of destruction of wheels and rails—fatigue damage and adhesion wear (and its heavy form—

scuffing, leading to vibrations and noise) and plastic deformations are observed. During curving the 

instant slipping process can periodically repeat, which at approximate equal conditions of movement, can 

lead to the known kinds of rail destruction—rutting corrugation. In such conditions the wavelength is 

approximately 100-200 mm, which, at a movement speed approximately 100 km/h, corresponds to a 

relatively low frequency—50 Hz. The relatively high frequencies (up to 50 kHz) take place in the contact 

of the wheel flange and rail gauge at the stick-slip movement [7, 8]. 

 

 
 

Fig. 3. Traces of rail rutting corrugation on an internal rail 

Рис. 3. Следы волнового износа по внутреннему рельсу 
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The periodic advancement of the inner wheel at the movement of the wheel-set in the curve causes the 

torsion deformations of the wheel-set shaft along with its bending deformations that can lead to the crack 

propagation in the places of location of wheels and gears (Fig. 4 [9]).  

 
 

Fig. 4. Crack propagation in the places of location of wheels and gears 

Рис. 4. Распространение трещин в месте установки колеса или зубчатого колеса 

 

Therefore, to improve the working conditions of wheels and the rail set movement of the wheel-set in 

the curve and periodic advancement of the inner wheel and increase of the lateral force, it is necessary to 

return the wheel-set to the initial radial position and decrease the lateral force. 

It is known about positive influence of the third body with necessary properties on the adhesive wear, 

scuffing and fatigue damage of surfaces. The criterion of destruction of the third body (scuffing criterion) 

was developed by us for the bodies working in the condition of rolling with sliding at the use of liquid oil 

lubricant on base of elastohydrodynamic theory of lubrication and experimental results [10-12]: 

 

 

(1) 

 

where: K and e – K and e are determined experimentally and they characterize the stability of the 

boundary lubricating layers. The following data of K and e are obtained on the twin disk machine 

for mineral oils K = 0,39; e = 0,4. R—reduced radius of curvature; Ra1 and Ra2—average standard 

deviation of the profiles of friction surfaces before scuffing; µ—dynamic viscosity of the lubricant 

oil in the normal conditions; Pl—linear load; β—piezo coefficient of the lubricant viscosity; λ—

lubricant thermal conductivity; ά—thermal coefficient of the lubricant viscosity; Vsl—sliding 

velocity; Vr— rolling velocity; Pe—average Pecle number (Pe1=bV1/a1, Pe2=bV2/a2; where b—

half width of Hertzian contact; V1, V2—peripheral velocity of the contacting bodies). 

As it is shown from the formula, the conditions of destruction of the third body depend on the 

mechanical and thermo-physical characteristics of interacting surfaces, geometric and kinematic 

parameters, and thermo-physical and tribotechnical parameters of the third body. Researches have shown 

also the special sensitivity of the third body on thermal loading and relative sliding, which must be taken 

into account to improve the working conditions of running gear of electric locomotive. 

Different parts of interacting surfaces of wheels and rails need to have different properties. The 

friction factor for wheel flange and rail gauge face should be as low as possible—less than 0,1. 

Excessively high friction on tread surfaces cause severe wear, plastic flow, fatigue and low friction, 

which can cause poor traction and braking. For tread surfaces of a wheel and a rail, the friction factor 

should not be less than 0.25 and no greater than 0.4; the optimal value of friction factor for tread surfaces 
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is 0.35. This is one of the required conditions for normal interaction of wheels and rails, which are not 

properly realized yet. 

To prevent the above-mentioned undesirable phenomena, it is important to control the friction factor 

and protect the third body against destruction. But until recently, despite a considerable quantity of works 

devoted to the investigations of dependences between wheel/rail and wheel/brake shoe friction forces and 

their durability, as well as rail cant and wheel profiles, expected results are not obtained yet. Besides, 

power and thermal loads on the contact zone are very high, which cause high damage rate of the third 

body and interacting surfaces of wheels and rails, their damage and variation of the friction factor in wide 

range. For example, the contact stress at initial point contact of wheels and rails (or at initial linear contact 

of worn-out wheels and rails) can reach 3 GPa and the contact area—1 square centimeter, the average 

temperature on the tread surfaces—400°C, and on the flange surfaces can exceed 800°C [9, 13], and on 

the brake shoe—melting temperature of metal. 

 

 
3. INFLUENCE OF THE UNSPRUNG MASSES ON THE WHEEL/RAIL CONTACT LOADING 

AND THE SCHEME OF THE FREIGHT ELECTRIC LOCOMOTIVE RUNNING GEAR  

 
The supporting elements of the freight locomotive traction engine are the unsprung wheel-set and the 

sprung part of the bogie or engine (Fig. 5). Partial leaning of the traction engine on the wheel-set 

increases its unsprung mass and contact loading of the wheel and rail. 

 

 
 

Fig. 5. The freight locomotive running gear 1 – traction engine; 2 – wheel-set; 3 – gear wheel; 4 – pinion; 5 – 

suspension of the traction engine; 6 – transversal beam of the bogie 

Рис. 5. Ходовая часть грузового локомотива. 1 – тяговый двигатель; 2 – колёсная пара; 3 – зубчатое колесо;  

            4 – шестерня; 5 – подвеска тягового двигателя; 6 – поперечная балка тележки 

 

Therefore, it is necessary to elaborate such a running gear of the freight locomotive, which will ensure 

to decrease the unsprung masses of the freight locomotive running gear, the lateral forces and relative 

slipping in the contact zone. 

Such scheme is shown in Fig. 6, where the traction engine is completely sprung, and when the lateral 

force exceeds the allowable value in the curves, the wheel moving on the inner rail will be automatically 

disengaged from the running gear kinematic chain, and at a decrease of the lateral force the wheel will 

again be engaged in the kinematic chain. 

At a movement in the curve, the flange of the outer wheel 8 will contact with outer rail (not shown) 

gauge and produce the axial force. This force will be transmitted to the bushing 12, which will move in 

the direction of this force together with the wheels 8 and 9. The teeth of half-coupling 11 will enter deeper 

in the teeth of the half coupling of the gear wheel 5 and the teeth of the half coupling of wheel 8 will be 

disengaged from the teeth of half-coupling 13 of gear wheel 1. Springs 10 and 21 return wheels 8 and 9 to 
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the initial position. This will cause a movement of axle 17 towards its initial position, a decrease of the 

angle of attack, axial force, rolling resistance and wear rate of the wheel flange and rail gauge. 

 

 
 

Fig. 6. A scheme of the electric locomotive running part 

Рис. 6. Схема ходовой части локомотива 

 
Teeth gears 1 and 5 together with wheels 8 and 9 and shaft 17 will roll up on driver pinions 2 and 3 

(mounted on the engine shaft) at the action of the vertical loading from rails (not shown on the scheme), 

so this loading will not be transmitted directly to engine 1, sprung on the bogie or body. It will 

considerably decrease the unsprung mass (approximately by 2.5 tons). If we assume that the mass of the 

engine is 5 t, which is half-sprung and the mass of the wheel-set is 1.4 t, then the unsprung masses per 

one wheel will be m1 = 2 t and in the case of the sprung engine – m2 = 0.7 t. At a train velocity of 100 

km/h (27.7m/s), when the rail sinusoidal wave length is 0.2 m and height is 3mm (the amplitude 1.5mm), 

variation of the wheel vertical displacement can be expressed as x=0,0015sinwt. Since the period of 

impulses is t=l/v=0.2/27.7=0,0072 s, the cyclic frequency will be w=2π/t=2.3.14/0.0072=872 1/s and 

coordinate x and its derivatives will be: x=0,0015sin872t; x’=0,0015*872cos872t; x’’=-

0,0015*872
2
sin872t. Maximum acceleration and maximum periodic forces acting on the masses m1 and 

m2 will be: x’’=1140,6 m/s
2
. F=x’’max*m=1140.6*2000=2281 kN, F1=x’’max*m1=1140.6*700=798 kN. 

Thus, the periodic force acting on the wheel is decreased by 1483 kN (or 2.85 times). At the same masses 

and velocities, if we assume that diameter of the wheel is 1 m and the eccentricity is 3 mm, then its 

maximum acceleration will be x’’=0,0015*(55,2)
2
 =4,57 m/s

2
,
 
and the maximum periodic forces acting on 

the wheels for unsprung and sprung masses will be: F=x’’max*m=4.57*2000=9140 N, F1=x’’max* 

m1=4.57*700=3199 N. Thus, the periodic force acting on the wheel is decreased by 5940 N (or 2.85 

times). 
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4. CONCLUSIONS 
 

1. A new scheme of the locomotive running gear is offered in the paper in which the relative sliding, 

angle of attack and lateral force are decreased by disengagement of the inner wheel from the kinematic 

chain at a limiting value of the lateral force. 

2. The impact of the traction motor mass on the wheel-set is limited in the offered scheme due to the 

possibility of rotation of the wheel-set gear wheel around the motor pinion. 

3. The mentioned factors decrease the wear rate of the wheel and rail, energy consumed, vibrations and 

noise. 
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