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NEW APPROACH IN DEFINITION OF MULTI-STOP FLIGHT ROUTES 
 

Summary. Optimization and profitability approaches play a crucial and central role in 
airline industry today. The main problem is how to overcome complexity by providing 
effective route schedule with minimal empty seats. So we need capable tools to re-
optimize existing flight routes or to offer new one instead. This research deals about the 
efficient heuristic algorithm for optimal transportation of N different passenger 
contingents between ending points. We want to find out better transport plan with 
minimal transport cost for the route with more charging/discharging points (airports). 
Such optimization tool can help in sizing of appropriate airplane for definite direction, 
too. 

 
 
 

NUEVA APROXIMACIÓN EN LA DEFINICIÓN DE LOS VUELOS CON LAS 
PARADAS MULTIPLES 

 
Resumen. Aproximación de la optimización y rentabilidad tiene un crucial y central 

parte en la industria de la aviación hoy. El problema principal es como superar la 
complejidad al proporcionar los horarios de la ruta efectiva con un mínimo de los asientos 
vacíos. Por tanto necesitamos mejor instrumentos para re-optimizar rutas de vuelos 
actuales o en vez ofrecer nuevas rutas. Este investigación se trata sobre el algoritmo 
heurístico eficiente para el trasporte optimo de N diferentes contingentes de los pasajeros 
entre puntos finales. Queremos encontrar mejor plan de transporte con los costes mínimos 
para las rutas con más puntos de recargas / descargas (aeropuertos). Esta herramienta de 
optimización puede ayudar en dimensionamiento del avión adecuado para la dirección 
definida, también. 

 
 

1. INTRODUCTION 

Airlines companies have a big responsibility to satisfy people’s needs and in the end to gain profit. 
Today air transport industry is influenced indirectly by the economic recession, increase of fuel cost, 
stiff competition and political instability. The major change in trends of air transport development is to 
increase operating efficiency, productivity and profitability, so more and more routes with multiple 
stops (landings) are introduced. The scheduling of multi-stop flight routes is the crucial elements, 
especially in definition of the available airplanes, the airport slots, the airplane rental charges, airport 
service costs and other cost elements.  
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2. PREVIOUS RESEARCH AND REFERENCES 
 

The most important issues to enhance the airline operation efficiency are flight routing and fleet 
scheduling. Generalized approach to multi-commodity transportation problem we can find in the early 
paper of Wollmer [14]. Wollmer finds out that capacity of the air corridors are virtually unlimited; 
however the number of flight assignments would be constrained by number of planes, pilots, same as 
with upper bound of seats for defined airplane type (capacity). 

Many network flow techniques and models exist to solve the complex mathematical problem in 
flight routing. Model for fleet routes is based on the multiple commodity network flow problem 
(MCNFP) introduce in paper of Yan and Tseng [12]. 

Allocation of the expenses and revenue are the basic things that must be considered to evaluate the 
route profitability. Some costs can be caused directly and some indirectly. These data are very 
important to determine the correct calculation and profitability of the each route (Chang and Schonfeld 
[3]). In fleet routing and multi-stop flight scheduling the crucial elements are setting the available 
airplanes, the airport slots, the airplane rental charges, airport service cost (quota), fuel consumption, 
maintenance cost and other cost elements, which lead to the minimization of all expenses and 
maximization of the company’s profit (Yan and Young [13]). 

Short-term flight scheduling model is developed and applied to Taiwan airlines. Such model is 
defined as a non-linear integer program that is known as NP-hard problem. Non-linear problem is 
more difficult to solve than the traditional flight scheduling problem that is defined as integer linear 
program. The heuristic methods and algorithms can improve such approach significantly (Yan, Tang 
and Lee [12]). 

In the research paper of Yan, Chen [9] is developed the model for Taiwan inter-city bus carriers. 
The model is based on integer multiple commodity network flow problem, too. In the literature many 
papers have been already devoted to ship routing in marine industry. Ferry fleet routing problem is 
solved by time space network technique that is specified to the defined time period (one day in this 
paper). In that technique represented by network structure, horizontal axis symbolizes airport locations 
and vertical axis represents the time duration (distance). Each arc between airports represents activity 
of ferry transport (Yan, Chen, Chen and Lou [10]). 

Another group articles are concerned by vehicle routing problems. In the paper of Garaix, Artiques, 
Feillet and Josselin [2] the optimization of routing vehicles in freight or passenger transport is 
presented. During this representation for vehicle routing problem the fixed sequence arc selection 
problem is raised (FSASP). They proposed a dynamic programming solution method (ODT) for 
solving that problem. In the article written by Stojković, Soumis, Desrosiers and Solomon [7] 
DAYOPS model is presented. Every arc presents each flight leg which means a distance between 
departure and arrival. Model can be used to re-optimize the route schedule at the high level and at the 
lower level. The load factors, airline frequency, airplane size are necessary issues that must be taken in 
consideration for making the airline profitable. Choosing an appropriate airplane size for the flight 
route must be appropriate to the level of demand. This factor can influence a lot on the optimization of 
the flight route and optimum load occupancy of the airplane (Givoni and Rietveld [3]). 

Maintenance costs include engine repair, consumption parts for airplane, technical support, 
technical documentation, maintenance staff, and other maintenance costs (Gomm [4]). 

Airport service costs include landing cost and handling cost for airplane, passengers, luggage and 
freight transportation. Each airport determines the cost for using the airport for landing and handling 
their airplanes (Tatalović, Babić and Bajić [8]). 

Many carriers installed the route planning software with the goal to optimize their existing routes, 
to increase profit and decrease expenses. With such systems we can clearly see the picture of the costs 
that influences on the route profitability and the way how to improve it. The software helps the pilots 
to find a better balance of fuel usage, flight speed and flight path. The efficiency today is the most 
important and the costs must be minimized wherever it is possible. Such optimization tool could be the 
crucial thing in any intelligent transportation and it influences on the airline profitability significantly.  
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Fig. 1. Transportation problem can be represented by a flow diagram of oriented acyclic network 
Fig. 1. Problema de transporte puede ser representado con un diagrama de flujo de la red orientada acíclica 

3. MATHEMATICAL MODEL  

Taking into account passenger demands for each airport and each destination, with sufficient 
amount of passengers waiting to be transported, we need optimal transportation plan to minimize 
shipping and loading/unloading expenses, transportation cost and cost of airport costs (connected with 
expenses at airport and loading process). It can help in definition of optimal airplane capacity 
arrangement or for evaluate the route efficiency. The problem of optimal transportation from multiple 
(several) airports of loading (sources) to multiple destinations (sinks) is very hard (NP-hard) 
optimization (combinatorial) problem.  

Amounts of different passenger contingents are in firm correlation because the total capacity of 
airplane is limited. Passenger contingents are differentiated with i for i = 1, 2, ... , N. The plane with 
defined capacity is shipping from the first to the last airport marked with M+1, with possible set of 
intermediate ports marked with K. The objective is to find a loading and transportation strategy that 
minimizes the total cost incurred over the whole voyage route consisting of M airports on the path (M 
≤ K). We need the loading plan for various passenger contingents in each airport to serve N passenger 
loads from loading airport to destinations (landing point). 

The transportation technique explained above can be seen as the capacity expansion problem 
(CEP). Transmission portions of the airplane space are capable to serve N different passenger loads 
(multi-commodity) for i = 1, 2, ..., N. For each passenger load we need a part of airplane capacity, so it 
looks like capacity expansion problem. 

New capacity portion on the board of aircraft can be assigned to appropriate passenger load up to 
the given limit (maximal capacity). Used capacity can be dimensioned in two forms: by expansion or 
by reduction. Expansions/reductions can be done separately for each passenger contingent (load). 
Fig. 1 gives an example of network flow representation for multiple contingents (N) and M airports on 
the route. So the transportation problem can be represented by a flow diagram of oriented acyclic 
network.  
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Let G (V, E) denote a network topology, where V is the set of vertices/nodes, representing capacity 
states on the board and A, the set of arcs (links) representing traffic changes (loading/unloading, 
transportation, airport services etc.) between airports. Each link on the route (path) is characterized by 
z-dimensional link weight vector, consisting of z-nonnegative weights. In general we have multi-
constrained problem (MCP) with multi-dimensional link weight vectors for M+1 links on the path 
{wi,m, m ∈ A, i = 1, …, N}. The constraints for capacity bounds are denoted with Li,m (L1,m L2,m, … 
LN,m). For an additive measure (load of passengers) definition of the constrained problem is to find a 
path from the starting to the end airport with minimal weight to satisfy maximal traffic load. It is 
equivalent with minimal cost that is the function of all expenses and shorter distance gives lower 
weight. Also, the weight of each link corresponds to the amount of used capacity. As it is an additive 
measure more people on board cause lower transportation cost of one passenger. The objective is to 
find the optimal routing policy that minimizes the total cost with maximal passenger load on the path. 
In the context of MCP we can introduce easily the adding constraints e.g. max. length of the route. 

In that CEP model the following notation is used: 
i, j and k  = indices for passenger load. The N facilities are not ranked, just present different types 

of passenger contingents from 1, 2, ... , N . 
m = indices the airport of boarding and landing. The number of air of calls on the route including 

departure airport M (m = 1, ... , M) . 
xi,m  = quantity of i-th load of  passenger amounts being loaded on board in airport m 
ri,m   = unloading of passenger i-th contingent in airport m. For convenience, the ri,m is assumed to 

be integer. 
Ii,m   = the total amount of passengers transported from port m to m+1. The amount of passenger 

load i at departure from airport m is equivalent to arrival at airport m+1. Before the first airport of 
loading, Ii,1= 0 . After last airport Ii,M+1 = 0 for i =1,…, N. 
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=

−=
N

i
mimim rxI

1
,,

        
(1)  

for  i = 1, …, N  ;  m = 1,…, M 
                           Capacity values cannot be negative. 

Li,m = maximal amount of contingent i to be boarded on airport m. 
zm = the total amount of all passengers related to airport taxes.       

 zm ≤ Im¸                                  (2)
 lonm = maximal length of the each hop, not to exceed the length of the whole route LON. 

 
 

4. ALGORITHM DEVELOPMENT 

Instead of a nonlinear convex optimization, that can be very complicated and time-consuming, the 
network optimization methodology is efficiently applied. The main reason on such approach is the 
possibility of discrete capacity values for limited number of contingent loads, so the optimization 
process can be significantly improved. The multi-constrained routing can be formulated as Minimum 
Cost Multi-Commodity Flow Problem (MCMCF); see [6]. Such problem (NP-complete) can be easily 
represented by multi-commodity the single (common) source multiple destination network. 
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Definition of the single-constrained problem is to find a path P from starting to end airport such 
that:  
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where:    Ii,m ≤  Li,m          (4) 
satisfying condition:       max. distance of   P =  ∑ ≤
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(5)  

for  i = 1, …, N  ;  m = 1,…, M
 

 
A path obeying the above conditions is said to be feasible. Note that there may be multiple feasible 

paths between starting and ending airport (node).  
Generalizing the concept of the capacity states after loading/unloading each passenger contingent 

(load) m between airports on the route we define as a capacity point - αm.  
αm = (I1,m, I2,m, ... , IN,m)      (6) 
α1 = αM+1 = (0, 0, ... , 0)      (7) 

In formula (6) αm denotes the vector of capacities Ii,m for each load i and for each airport m, and we 
call it capacity point. On the flow diagrams (fig. 1.) each column represents a capacity point of the 
node, consisting of N capacity state values (for i-th passenger load).  

Let Cm be the number of capacity point values at airport m (passenger load values for each 
contingent after departure from airport); see fig. 2. Only one capacity point is for starting and for end 
airport on the route: C1 = CM+1 = 1. The total number of capacity points is:  
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Horizontal links (branches) are representing capacity flows between two neighbor airports on the 
route. Formula (7) implies that zero values are before loading on the starting point same as after 
unloading on the ending point.  

The objective function for CEP problem can be formulated as follows: 
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so that we have:    
mimimimi rxII ,,,1, −+=+         (10) 
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for m = 1, 2, ..., M+1;  i = 1, 2, ... , N;  j = i + 1, ... , N. 
 
In the objective function the total cost (weight) includes some different costs. As we want to 

incorporate minimization of expenses with profit calculation in the same optimization process than we 
have to introduce freight cost (passenger tickets) and all expenses have to have negative polarity; see 
(9). Freight cost (passenger tickets) is denoted with fi,m(Ii,m). We can differentiate freight cost for each 
passenger load (contingent). 

Transportation cost is denoted with ci,m(xi,m – ri,m). The idle capacity cost hi,m (Imax-Ii,m) could be 
taken into account, but only as a penalty cost to force the usage of maximal  capacity (prevention of 
unused/idle capacity). The airport taxes cost gm (zm) has to be introduced, too. With that cost we can 
include all airport expenses. Costs are often represented by the fix-charge cost or with constant value. 
It should be assumed that all cost of functions is concave and non-decreasing (some of them reflecting 
economies of scale) and they differ from one airport to another. The objective function is necessarily 
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Fig. 2. The shortest path problem for an acyclic network in which the nodes represent all possible capacity points 
Fig. 2. El problema de corto recorrido para la red acíclica en la que los nodos representan todos los posibles 

puntos de capacidad 

non-linear cost. With different cost parameters the optimization process could be strongly influenced, 
looking for benefits of the most appropriate transportation solution. 

The profit will be reduced by transportation costs. Instead of maximization of the profit we can use 
minimization of the reciprocal value. Generally, the objective function is the exponential cost showing 
the economy of scale. 

The network optimization can be divided in two steps. At first step the minimal transportation 
weights du,v is calculated between all pairs of capacity points (neighbor airports on the route). The 
calculation of each weight value between any couple of capacity points has been named: capacity 
expansion sub-problem (CES). At second step should be looked for the shortest path in the network 
with former calculated weights between node pairs (capacity points); see [5]. On that network 
optimization level problem can be seen as a shortest path problem for an acyclic network in which the 
nodes represent all possible values of capacity points; see fig. 2. Then Dijkstra’s algorithm or any 
similar algorithm can be applied.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In our optimization process number of passengers on board do not influence on voyage speed 
neither to oil consumption but it could be easily incorporated.  

The loading strategy consists of loading/unloading plan for each airport and for each passenger 
contingent. The starting airport on the route can be only for loading and the last airport on the route 
can be only for unloading; other airports on the route may be for both. Some source airports can have 
limitation on passenger capacity, but most of them are main airports with capacity exceeding the 
plane’s earning capacity (total capacity of airplane). 
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Fig. 3. Airports and distances (an example) 
Fig. 3. Aeropuertos y distancias (un ejemplo) 

                        

                                

Fig. 4. Potential transfer of passengers between airports given in percentage of the airplane capacity  
Fig. 4. Transferencia potencial de los pasajeros entre los aeropuertos indicados en el porcentaje  
           de la capacidad del avión 

                 

5. RESULTS AND DISCUSSION 
 

In route definition we have starting airport (1) and ending airport (5), but three middle airports can 
also be included in the route, see fig. 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In fig. 4 we can see traffic demands (possible transfer of passengers between airports). That 

information is gathered through market research or from statistics. This graph also provides the 
percentage of the potential passengers for particular destination in reference to total airplane capacity. 
In input data of seven traffic demands it is obvious that most of passengers are interested in the 
transfer from 1 − 4 airport and from 2 – 5 airport (40 %). According to all costs and the price 
determination (tickets, oil consumption, etc.) we can design the route which will be more profitable.  
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On the fig. 5 we have an optimal route definition (loading and unloading amounts for particular 
airport).  

On the fig. 6 the airplane occupancy on the route is presented. Amounts of passengers are given in 
percentage of airplane capacity. In our test-example the optimal route will be from airport 1 to airport 
2, to airport 4 and finally to airport 5, excluding airport 3. The optimization solution extracts the 
airport 3 because it is not profitable to go away from the path (long distance). 

 
Fig. 5. Optimal solution given by loading and unloading amounts in each airport on the route 
Fig. 5. Solución optima determinada por cantidades de carga y descarga en cada aeropuerto en la ruta 
 

 
Fig. 6. Airplane’s occupancy on the route with particular passenger contingent 
Fig. 6. Ocupación de los vuelos en la ruta con particular contingente de los pasajeros 

 
Fig. 7 represents the idle capacity of the airplane during the voyage.  
We can see that only from airport 2 to airport 3 we have free capacity (20%) and from airport 4 to 

airport 5 (40%). For this example all prices for tickets/km are equal but it can be differentiated. 
 

6. CONCLUSIONS  

One of the most important problems in airline transportation is to find the sequence of passenger 
distribution between multiple sources and multiple destinations (stops), minimizing the transportation 
cost and better utilization of the airplane capacity. With optimizing their routes companies can ensure 
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Fig. 7. Free capacity of the airplane on the route 
Fig. 7. Capacidad disponible del avión en la ruta 

                                       

significant savings and be profitable by following the demand and easily adapt to its changes. Such 
optimization tool can help in sizing of appropriate airplane, too. So with the smaller planes sometimes 
company can transport the lower number of passenger if the demand for that particular returning flight 
is not so high. With comparing the data from both directions we can find the most appropriate and 
efficient route. Another one possibility in route definition is the change of starting or ending airport. 
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