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ANALYSIS OF DISTURBANCE TORQUE INFLUENCE ON CRITICAL 
STATE IN ROTATIONAL SYSTEMS 
 
 

  
Summary. Currently most of existing means of transport contains different types of 

rotational systems. In many cases the dynamics of such rotors substantially can influence 
exploitation of the whole vehicle. Moreover, in order to minimize mass of the whole 
object modern construction materials are applied. This causes that the dynamic 
phenomena may be fundamental of exploitation. The paper presents preliminary analysis 
of disturbance torque influence on critical state in rotational system. The consideration 
assumed simple physical object in the form of heavy disk embedded on weightless, 
elastic shaft. The shaft was supported on two bearings. In particular chapters of paper, 
path leading from proposition of physical model, by solution of it, to qualitative 
conclusions about considered object and torque disturbances influence of motion of this 
system, was presented. In introduction, outline of considered problem and potential 
opportunities of it, were demonstrated. In the next chapter, physical and mathematical 
model of the analysed object, was described. Next and also the last but one chapter gives 
a detailed discussion of mathematical model in the form of nonlinear ordinary differential 
equations proposed earlier. The first part of the chapter presents the possibility to solve 
such a problem, then it shows the simplifications which are used. Furthermore, the 
influence of used simplifications on the shape of analysed problem was demonstrated. 
Additionally, the possibility of equations solution presented in the paper was discussed. 
Moreover, the series of interesting properties of analysed system of equations has been 
shown based on founded approximate solutions. The whole paper was summarized with 
plans for future work and synthetic conclusions concerning the innovative control method 
of critical states. 

 
  
  

ANALIZA WPŁYWU ZABURZENIA MOMENTU SKRĘCAJĄCEGO NA STANY 
KRYTYCZNE UKŁADÓW WIRUJĄCYCH 

  
Streszczenie. Aktualnie większość istniejących środków transportu zawiera różnego 

typu układy wirujące. W wielu przypadkach dynamika takich wirników w istotny sposób 
wpływa na eksploatacje całego pojazdu. Ponadto w celu zminimalizowania masy całego 
obiektu stosuje się nowoczesne materiały konstrukcyjne. To powoduje, że zjawiska 
dynamiczne, mogą mieć podstawowe znaczenie eksploatacyjne. Artykuł przedstawia 
wstępną analizę wpływu zaburzenia momentu skręcającego na stany krytyczne układu 
wirującego. Do rozważań przyjęto prosty obiekt fizyczny w postaci ciężkiego krążka 
osadzonego na nieważkim podatnym wale podpartym w dwóch łożyskach. 
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W poszczególnych rozdziałach artykułu przedstawiono drogę prowadzącą od 
zaproponowania modelu fizycznego, przez jego rozwiązanie do jakościowych wniosków 
o rozpatrywanym obiekcie i wpływie zaburzenia momentu skręcającego na jego ruch. We 
wstępie przedstawiono zarys rozpatrywanego problemu oraz potencjalne możliwości 
wykorzystania opracowanego zagadnienia. W kolejnym rozdziale zaprezentowano model 
fizyczny oraz matematyczny dla obiektu będącego podstawą niniejszego artykułu. 
Następny i zarazem przedostatni rozdział w sposób szczegółowy przedstawia dyskusję 
zaproponowanego wcześniej modelu matematycznego w postaci układu nieliniowych 
równań różniczkowych zwyczajnych. Na początku rozdziału przedstawiono 
rozwiązywalność takiego zagadnienia, następnie opisano zastosowane uproszczenia. 
W dalszym ciągu zademonstrowano wpływ zastosowanych uproszczeń na kształt 
analizowanych równań. Dodatkowo podjęto dyskusję o możliwości rozwiązania równań 
przedstawionych w pracy. Ponadto na podstawie znalezionych przybliżonych rozwiązań 
wykazano szereg ciekawych własności analizowanego układu równań. Całość została 
podsumowana celami dalszej pracy oraz syntetycznymi wnioskami, dotyczącymi 
propozycji innowacyjnej metody sterowania stanami krytycznymi. 

  
 

1. INTRODUCTION 
  

Almost all means of transport contain rotating elements. In many cases the rotors are long and 
relatively thin. It means the dynamics of the system may impede the normal exploitation of the 
technical objects. There are many problems associated with the movement of rotating systems. Each of 
these problems can significantly affect the exploitation vehicle. 

The basic dynamic problem, which exists during the rotor work, is the phenomenon of the 
movement stability loss. The analysis of the simplest rotor model shows that in certain neighborhood 
of critical frequency θω  there is a sudden increase of bending vibration amplitude. After crossing this 
frequency (shaft work in supercritical state) bending oscillation decreases. The phenomenon of 
bending vibration decrease is called the self-centering of shaft [1]. 

From the design point of view, the shaft self-centering is very valuable because of unavoidable 
assembly errors, which are a direct reason for stability loss. There is a justified need for the slender 
shafts to work in supercritical state. 

Unfortunately, work with supercritical speed implies a serious exploiting problem, so called 
problem of transition via critical speed. The simplest shaft model with vibrating mass does not allow 
to suggest any other technique of passing by via critical state. Thus, it is necessary to analyze a more 
precise model to find the critical state control technique of the analyzed system. 

Solutions existing in literature [1] and their real constructional application indicates that the method 
of transition via endangered zone is based on big enough angular acceleration of rotor during the 
system starting. The only condition is that bending oscillation during the transition process cannot 
exceed the limiting value resulting from strength or exploiting constraints. 

It is obvious that it is not always possible to reach sufficient acceleration so that any rotational 
system (i.e. with infinite mass moment of inertia) could easily pass by the critical state. It means that 
there is a certain group of systems for which the work in supercritical state is impossible due to the 
existence of physical limitation e.g. constructional or energetic. 

Thus, the proposition of critical state control technique, different than the acceleration in 
endangered zone, is justified in the perspective of shaft exploitation. For this purpose, it is possible to 
use solutions of models available in literature in order to find new methods of critical speed transition. 
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2. MODELING OF THE SYSTEM 

  
Typical shaft with one rotor can be modeled as the system presented in Fig. 1. 
 

 
Fig. 1. Shaft model 
Rys. 1. Model wału 

 
This model consists of rotor, which has the mass m  and the mass moment of inertia I , and the 

rotor mass centre in eccentric e . The shaft is transversely elastic and torsionally rigid. Transverse 
elasticity of shaft can be shown as the function )(⋅k , which has Taylor series expansion. 

The analyzed system is described as nonlinear second-order differential equations: 
 0)(cossin 2 =⋅+⋅⋅⋅−⋅⋅⋅−⋅ hhkememhm φφφφ  , (1) 
 0)(sincos 2 =⋅+⋅⋅⋅−⋅⋅⋅+⋅ vvkememvm φφφφ 

 , (2) 

 )(cossin)( 2 tMvemhememI ∆=⋅⋅⋅+⋅⋅⋅−⋅⋅+ φφφ 

 . (3) 
 
 

3. DISSCUSION OF THE EQUATIONS SYSTEM SOLUTION 
  

Typical shaft with one rotor can be modeled as the system presented in Fig. 1. The nature of a 
typical shaft work puts some limitations on rotational motion. It is good to present the angular position 
of shaft described by the function of time )(tφ  in the form of the main motion and its disturbance 
sum. The use of this form is justified by the simplicity of the formulation of constraints, which were 
defined earlier. Thus, the map )(tφ  can be written as: 
 )()()( ttt θψφ += , (4) 
where: )(tψ  – main motion, )(tθ  – motion disturbance described by the period function. 

The quantity described by the function )(tψ  represents global and expected character of motion. In 
case of shaft work, the angular position constantly increases. It corresponds to the situation when the 
rotor accelerates (the angle increases with positive acceleration), after that, it reaches steady state of 
work (the angle increases linearly), to make the rotor stop in the end (the angle increases with negative 
acceleration). It means that in a typical shaft work the quantity )(tψ  constantly increases with 
variables acceleration in time – it is a one-way motion (in which the velocity has a constant sign). 
Therefore, quantity )(tψ  should be described by the weakly monotonic function of time. 

The second element of the dependency (4) defined as the function )(tθ  presents the disturbance of 
angular motion shaft. The reason for motion disturbances is mainly conjugate with other system 
degrees of freedom or significant torsional shaft elasticity. It is obvious that from the perspective of 
observing typical shaft exploitation, the impact of the disturbance )(tθ  on the main motion )(tψ  
must be “small”. Angular motion disturbance is described by upper and lower limited function. 
Otherwise, there would be the possibility of unlimited function increase )(tψ . Periodic maps, which 
have Fourier series expansion (i.e. such periodic functions satisfy the conditions which guarantee 
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series convergence – Dirichlet conditions [1 - 3]), are a wide class of the limited function. For this 
reason, it is assumed that the function )(tψ  belongs to the considered class. In order to formulate the 
conditions which limit the quantity )(tψ  the following quantities are introduced: 

)(max0 tθθ =  – maximum amplitude of angular disturbance, 

)(max tψ=Ω  – maximum rotational speed of the basic shaft motion, 

)(max0 tθ=Ω  – maximum velocity amplitude of angular disturbance. 
Angular velocity of shaft can be presented as the first time derivative of expression (4): 

 )()()( ttt θψφ 



 += , (5) 
and the acceleration as the second time derivative of expression (4): 
 )()()( ttt θψφ 



 += . (6) 
During the work of the typical shaft, the amplitude of angular disturbance cannot pass by the 

limited values. It is natural that maximum deviation of the assumed main motion is not big because it 
would influence the system as a whole. The limitation can have the following form: 

 
dop

dop m
πθθ =≤0 , (7) 

where: dopθ  – maximum limited amplitude of the angular disturbance, 
dop

dopm
θ
π

=  – angle multiple  

          dopθ  in π  angle. 
The second constraint of motion disturbance is the ratio of disturbance velocity amplitude to the 

main motion velocity. It results from the fact, that the work of mechanical system with big changes in 
rotational speed is not allowed in most cases. This limitation has the form of the following condition: 
 Ω⋅≤Ω dopκθ . (8) 

where: dopκ  – maximum allowed quotient of angular disturbance amplitude of the shaft. 
In conclusion, it can be written that the inequality (7) shows a small assumption of angles, whereas 

inequality (8) represents the condition of small disturbance of angular velocity. 
In the specific case, while the main motion has the constant velocity Ω , and the disturbance is 

defined by the function of )sin(0 t⋅⋅ θωθ  type, (7) and (8) conditions can be presented in a different 
form. The first condition can be written in the form of amplitude of angular velocity disturbance and 
the second one as the limitation of the disturbance angle amplitude. These conditions have the 
following form: 

 θθθ ωπωθωθ ⋅=⋅≤⋅
dop

dop m0 , (9) 

 
θθ

θ

ω
κ

ω
Ω⋅

≤
Ω dop , (10) 

which leads to the following formulation of (7) and (8) conditions: 

 θθ
θ

θ ωπωω
ω

⋅=⋅≤
Ω

dop
dop m

, (11) 

 
θω

κ
θ

Ω⋅
≤ dop

0 . (12) 

On the basis of the (7) and (12) (or (8) and (11)) conditions, it is possible to find the constraints 
which have to be satisfied by the amplitude of vibration acceleration. These constraints are defined by 
the following dependencies: 
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 22
0 12 θθ ωπωθ ⋅≤⋅ , (13) 

 θθθ ωω ⋅Ω⋅≤⋅Ω 1.0 . (14) 

Assuming that 
θ

εωωθ θθθ =⋅Ω=⋅ 2
0  limiting conditions for accelerations have the following 

form: 

 2

12 θω
πε

θ
⋅≤ , (15) 

 θωε
θ

⋅Ω⋅≤ 1.0 . (16) 
Unfortunately, for each pair of sets defined by inequalities (7) - (12) and (15) - (16) there is no 

inclusion relation. Therefore, the disturbance frequency range θω  is divided into two areas: the area in 
which the limitation of angular disturbance value is significant, and the area in which the limitation of 
disturbance velocity value is significant. The point dividing the whole area of frequency into the 
previously defined ranges can be marked by the comparison of limitations (7) and (12) (or (8) and 
(11)). The solution of such an equation has always the following form: 

 Ω⋅
⋅

=Ω⋅≤
π

κ
θ
κ

θωθ
dopdop

dop

dop
gr

m
0 . (17) 

The formulated assumptions should be used for transformation and simplification of the differential 
equation system, which is defined by formulae (1) - (3) describing the motion of analyzed system, in 
order to find a strict solution. Such approach is the result of the fact that closed and analytical 
solutions of this system (1) - (3) do not exist. 

When the angle )(tφ  is put into the system of equation (1) - (3) in the form (4) the following 
equations are obtained: 

0)())()(())()(cos())()(())()(sin( 2 =⋅++⋅+⋅⋅−+⋅+⋅⋅−⋅ hhkttttemttttemhm θψθψθψθψ 







   
  (18) 

0)())()(())()(sin())()(())()(cos( 2 =⋅++⋅+⋅⋅−+⋅+⋅⋅+⋅ vvkttttemttttemvm θψθψθψθψ 





   
  (19) 

)())()(cos())()(sin())()(()( 2 tMttvemtthemttemI ∆=+⋅⋅⋅++⋅⋅⋅−+⋅⋅+ θψθψθψ 



   (20) 
When the trigonometric identity for the sum of angles of sinus and cosines is used to divide 

unknown functions )(tψ  and )(tθ  the following formula is obtained: 

0)())()(()(sin)(sin))()(()(cos)(cos
))()(()(sin)(cos))()(()(cos)(sin

22 =⋅++⋅⋅⋅⋅++⋅⋅⋅⋅−

++⋅⋅⋅⋅−+⋅⋅⋅⋅−⋅

hhkttttemttttem
ttttemttttemhm

θψθψθψθψ

θψθψθψθψ


















 (21) 

0)())()(()(sin)(cos))()(()(cos)(sin
))()(()(sin)(sin))()(()(cos)(cos

22 =⋅++⋅⋅⋅⋅−+⋅⋅⋅⋅−

++⋅⋅⋅⋅−+⋅⋅⋅⋅+⋅

hhkttttemttttem
ttttemttttemvm

θψθψθψθψ

θψθψθψθψ
















 (22) 

 
)()(sin)(sin)(cos)(cos

)(sin)(cos)(cos)(sin))()(()( 2

tMttvemttvem
tthemtthemttemI

∆=⋅⋅⋅⋅−⋅⋅⋅⋅+
+⋅⋅⋅⋅−⋅⋅⋅⋅−+⋅⋅+

θψθψ
θψθψθψ







  (23) 

In connection with assumptions of small angles (assumption (7)), the following assumptions can be 
written with satisfying approximation: 
 )()(sin tt θθ ≅ , (24) 
 1)(cos ≅tθ . (25) 

The approximation precision (24) and (25) is the bigger, the smaller the angle value )(tθ  is. 
Maximum error is marked by the biggest acceptable disturbance amplitude dopθ . In engineering 
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calculations the range of arguments, for which dependencies (24) and (25) make sense is 
12

)( πθ ≤t . 

It means that the analyzed quantity dopθ  must be smaller than: 

 
12
πθ ≤dop . (26) 

For these approximations the equations have the following form: 

 
0)())()(()()(sin))()(()(cos

))()(()()(cos))()(()(sin
22 =⋅++⋅⋅⋅⋅++⋅⋅⋅−

++⋅⋅⋅⋅−+⋅⋅⋅−⋅

hhkttttemtttem
ttttemtttemhm

θψθψθψψ

θψθψθψψ


















, (27) 

 
0)())()(()()(cos))()(()(sin

))()(()()(sin))()(()(cos
22 =⋅++⋅⋅⋅⋅−+⋅⋅⋅−

++⋅⋅⋅⋅−+⋅⋅⋅+⋅

hhkttttemtttem
ttttemtttemvm

θψθψθψψ

θψθψθψψ
















, (28) 

 
)()()(sin)(cos

)()(cos)(sin))()(()( 2

tMttvemtvem
tthemthemttemI

∆=⋅⋅⋅⋅−⋅⋅⋅+
+⋅⋅⋅⋅−⋅⋅⋅−+⋅⋅+

θψψ
θψψθψ







. (29) 

The assumption of small velocity disturbance (formula (8)) allows to write an expression 
2))()(( tt θψ 

 +  in the following form: 

 
222222

22222

2)(max2)(max)(2)(

)(max)(max)(2)()()()(2)())()((

θθθθθθ ψψψψ

θθψψθθψψθψ

Ω+Ω⋅Ω⋅+Ω=Ω+Ω⋅⋅+≤Ω+Ω⋅⋅+=

=+⋅⋅+≤+⋅⋅+=+

tttt

tttttttttt















 (30) 

In extreme case, when the value of the amplitude of angular velocity disturbance is Ω⋅=Ω dopκθ  
the following formula is obtained: 
 222222 )21(2))()(( Ω⋅+⋅+=Ω⋅+Ω⋅⋅Ω⋅+Ω≤+ dopdopdopdoptt κκκκθψ 

 . (31) 
In engineering practice the error can be acceptable if it does not exceed %10 . The quantity of this 

error defines the maximum value of dopκ  because it has to satisfy the following condition: 

 1.021 2 ≤+⋅+ dopdop κκ . (32) 

Additionally, it is worth mentioning that 22 )21( Ω⋅+⋅+ dopdop κκ  is the limiting value, which is 

rarely taken by expression 2))()(( tt θψ 

 + . Thus, with the satisfying approximation (if condition (32) 
is satisfied) it can be assumed that: 
 22 )())()(( ttt ψθψ 



 =+ . (33) 
That is why, the simplified equations system has the following form: 

 
0)()()()(sin)()(cos

))()(()()(cos))()(()(sin
22 =⋅+⋅⋅⋅⋅+⋅⋅⋅−

++⋅⋅⋅⋅−+⋅⋅⋅−⋅

hhktttemttem
ttttemtttemhm

ψθψψψ

θψθψθψψ












, (34) 

 
0)()()()(cos)()(sin

))()(()()(sin))()(()(cos
22 =⋅+⋅⋅⋅⋅−⋅⋅⋅−

++⋅⋅⋅⋅−+⋅⋅⋅+⋅

hhktttemttem
ttttemtttemvm

ψθψψψ

θψθψθψψ










, (35) 

 
)()()(sin)(cos

)()(cos)(sin))()(()( 2

tMttvemtvem
tthemthemttemI

∆=⋅⋅⋅⋅−⋅⋅⋅+
+⋅⋅⋅⋅−⋅⋅⋅−+⋅⋅+

θψψ
θψψθψ







. (36) 

After grouping the similar terms and factoring out, the following dependencies are obtained: 

 
0)(])()(sin))()(()(cos[)(

)()(cos))()(()(sin
2

2

=⋅⋅⋅⋅−+⋅⋅⋅−⋅+

+⋅⋅⋅−+⋅⋅⋅−⋅

tttemtttemhhk
ttemtttemhm

θψψθψψ

ψψθψψ














, (37) 
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0)(])()(cos))()(()(sin[)(

)()(sin))()(()(cos
2

2

=⋅⋅⋅⋅++⋅⋅⋅−⋅+

+⋅⋅⋅−+⋅⋅⋅+⋅

tttemtttemvvk
ttemtttemvm

θψψθψψ

ψψθψψ












, (38) 

 
)()()](sin)(cos[

)(cos)(sin))()(()( 2

tMttvemthem
tvemthemttemI

∆=⋅⋅⋅⋅+⋅⋅⋅−

+⋅⋅⋅+⋅⋅⋅−+⋅⋅+

θψψ

ψψθψ










. (39) 

It is worth mentioning that in formulae (37) and (39) there are terms, which are proportional to 
disturbance angle )(tθ . These elements are much smaller than the rest of them, because the maximum 

disturbance value 0θ  does not exceed 2.0
12

≅
π

 (see formula (26)). Thus, small terms can be 

eliminated because they are much smaller than the rest of the elements of analyzed dependencies. 
After this elimination the following formula is obtained: 
 0)()()(cos))()(()(sin 2 =⋅+⋅⋅⋅−+⋅⋅⋅−⋅ hhkttemtttemhm ψψθψψ 





 , (40) 
 0)()()(sin))()(()(cos 2 =⋅+⋅⋅⋅−+⋅⋅⋅+⋅ vvkttemtttemvm ψψθψψ 



 , (41) 

 )()(cos)(sin))()(()( 2 tMtvemthemttemI ∆=⋅⋅⋅+⋅⋅⋅−+⋅⋅+ ψψθψ 



 , (42) 
The solution of system of equations (40) - (42) by the means of analytical methods is not possible. 

The approximate or numerical solution can be found [3,5,6]. In the case of vibrating systems, in which 
the nonlinearities are weak, the satisfying results can be obtained when the Galerkin method [1,2] is 
used. This method is based on the proposition of approximate solution, which belongs to the 
functional space. It is assumed that this space is the subspace of precise solutions space of the 
analyzed problem. Finding the approximate solution results in the projection of analyzed equation into 
the elements of expected solution, in the sense of previously defined scalar product. 

Predicted approximate solution has the following form: 
 )cos( tAh h ⋅Ω⋅= , (43) 
 )sin( tAv v ⋅Ω⋅= . (44) 

If the predicted solution is put into the system of equations the following result is obtained: 

 
))]()(()(sin)()([cos

)cos())cos(()cos(

2

2

ttttte

tA
m

tAktA h
h

h

θψψψψ 

 +⋅+⋅⋅=

=⋅Ω⋅⋅
⋅Ω⋅

+⋅Ω⋅Ω⋅−
, (45) 

 
))]()(()(cos)()([sin

)sin())sin(()sin(

2

2

ttttte

tA
m

tAktA v
v

v

θψψψψ 

 +⋅−⋅⋅=

=⋅Ω⋅⋅
⋅Ω⋅

+⋅Ω⋅Ω⋅−
, (46) 

The scalar product for the functional space of solutions (43) and (45) is defined as: 

 ∫ ⋅⋅
T

dttgtf
0

)()( , (47) 

The result of formulae projection (45) and (46) is: 

 

∫

∫

⋅⋅Ω⋅+⋅+⋅⋅=

=⋅⋅Ω⋅



 Ω⋅−

⋅Ω⋅
+⋅Ω⋅

T

T h
h

dttttttte

dtt
m

tAktA

0

2

2

0

2

)cos())]()(()(sin)()([cos
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The transformation of equation (48) and (49) results in approximate amplitude-frequency 
characteristics: 
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which after regrouping and arranging the terms have the following form: 
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The analysis of expressions (52) and (53) is difficult in general case. The main problem is the 
unknown form of functions )(tψ  and )(tθ . Only certain estimates concerning the properties which 
result from general form of formulae (52) i (53) can be proposed. 

The form of the expression indicates that critical states occur when the value Ω  is the zero of the 
denominator of dependencies (52) and (53) i.e. expressions: 
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and 
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In the numerator of approximate amplitude-frequency characteristics the following sum occurs: 

 
∫

∫∫
⋅⋅Ω⋅⋅⋅+

+⋅⋅Ω⋅⋅⋅+⋅⋅Ω⋅⋅⋅
T

TT

dtttte

dttttedtttte

0

00

2

)cos()()(sin

)cos()()(sin)cos()()(cos

ψψ

θψψψ







, (56) 

 
 
 
 
 



Analysis of disturbance torque influence on critical state in rotational systems 145 
 
and 
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this sum is the reason of the resonance. If this sum was zero, the critical state could not occur (the limit 

of type 
0
0  would have to be found). The first term of this sum is connected with the influence of 

centrifugal reaction force on the resonance: 
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The second term of this sum can be interpreted as the influence of angular shaft acceleration on the 
critical state: 
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The third term of this sum presents the influence of the angular velocity disturbances on the critical 
state: 
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and 
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If functions )(tψ  and )(tθ  are chosen in such a way that integrals (60) - (63) do not disappear, 
there is a possibility of the influence on the critical state of the system, because the numerator depends 
on the value of angular velocity disturbances of the shaft (dependencies (52) and (53)). It is difficult to 
evaluate the weight of the influence of particular elements. This evaluation requires the analysis of 
specific cases (concrete functions defining main motion and angular shaft disturbances should be 
assumed). In most cases, definite integrals exist for elementary functions. Thus, it is not difficult to 
find the concrete solutions. Besides, there is always the possibility to use numerical calculation of the 
value of analyzed integral. It means that the evaluation of torsional vibrations influence on vibrating 
shafts critical states is possible. Moreover, it is possible to evaluate the use of this influence to control 
the dynamics of the analyzed system. 

 
 

4. PRACTICAL APPLICATION 
  
The solution presented in the paper can be used to replace typical steel shafts by shafts made from 

modern construction materials. For example, drive shaft from Iveco van has length of 540 mm and 
diameter of 75 mm. Currently used drive shaft can be replaced by much thinner object made of carbon 
composite. Replacement would have completely different dynamic properties. The technique 
presented in the paper, provides a way to avoid some of the problems with the dynamics of the new 
rotor. Only the existence of opportunities to influence the bending vibrations was presented in the 
paper. This qualitative result is the basis for further research on this problem. Works on obtaining 
quantitative results are pending. Quantitative results will be presented in future articles. A similar 
approach can be used for other dynamic systems, such as a ball screw feed drive systems [7]. 
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5. CONCLUSIONS 

 
Moreover, it is possible to evaluate the use of this influence to control the dynamics of the analyzed 

system. The analysis carried out in this article indicates that there is a connection between torsional 
and transverse vibrations in the system defined by equations (1) - (3). It means that the application of 
the torque disturbance in the analyzed system (the reason for the occurrence of torsional vibrations) 
will influence the character of transverse shaft vibrations. Thus, it is possible to control the rotor 
vibrations with the help of the quantity disturbance )(tM∆  from equation (3). The evaluation of the 
range of transverse vibrations control, i.e. the influence of torsional oscillations on the shaft critical 
states requires: 
– a thorough discussion of integrals (60) - (63), 
– the application of a more precise method of the analyzed equations system solution, 
– a precise research of the workstation. 
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