
TRANSPORT PROBLEMS                                                                                                               2012 
PROBLEMY TRANSPORTU                                                                                       Volume 7 Issue 3 

 
 

truss bridges, cranes, finite element method 
 

Michał MUSIOŁ*, Artur BLUM 
AGH University of Science and Technology 
Al. Mickiewicza 30, 30-059 Kraków, Poland 
*Corresponding author. E-mail: mmusiols@gmail.com 
 
 
 
ASSESSMENT OF THE POSSIBILITY OF INCREASING A LOAD -
CARRYING STRENGTH OF TRUSS BRIDGES OF OVERHEAD 
TRAVELLING CRANES 
 

Summary. A possibility of increasing the load-carrying strength of truss bridges of 
overhead travelling cranes by transferring a part of a useful load from the main truss 
(which transfers directly the load originated from road wheels of the crane carriage) on 
the parallel auxiliary truss by means of increasing rigidity of truss members joining both 
trusses - was presented in the paper. The verification of a static relief of the main truss by 
the auxiliary one as a function of rigidity of transverse and skew space trusses was 
performed. The A. Blum method was used in analytical calculations. The obtained results 
were verified by means of the ANSYS 12.1 program utilising the finite element method 
(FEM). 

 
 
 
OCENA MOŻLIWOŚCI ZWIĘKSZENIA NOŚNOŚCI WYTRZYMAŁOŚCIOWEJ 
KRATOWNICOWYCH MOSTÓW SUWNIC POMOSTOWYCH 
 

Streszczenie. W artykule przedstawiono możliwość zwiększenia nośności 
wytrzymałościowej kratowych dźwigarów mostów suwnicowych poprzez przeniesienie 
części obciążenia użytkowego z kraty głównej, przenoszącej bezpośrednio obciążenie 
pochodzące od nacisku kół biegowych wózka suwnicowego, na równoległą kratę 
pomocniczą, drogą zwiększenia sztywności prętów wykratowania łączących obie 
kratownice. Sprawdzono statyczne odciążenie kraty głównej przez kratę pomocniczą w 
funkcji sztywności prętów wykratowania poprzecznego i ukośnego kratownicy 
przestrzennej. Do obliczeń analitycznych wykorzystano metodę A. Bluma. Otrzymane 
wyniki zweryfikowano przy użyciu oprogramowania ANSYS 12.1 wykorzystującego 
metodę elementów skończonych (MES). 

 
 
1. INTRODUCTION 
 

Truss bridges constitute a part of a railway, road and industrial infrastructure. They find 
applications in materials handling, at building overhead cranes and normal cranes. Objects built after 
1945 were made out of steel which, due to the technical level and production technologies of the time, 
contained significant amounts of non-metallic inclusions. As a result of many years of an intensive 
exploitation, structural material discontinuities were joining together forming internal cracks called 
lameral cracks. Those cracks significantly decreased a carrying capacity of structures. This is one of 
the reasons which justifies endeavours to increase the carrying capacity of structures during repair 
works. The paper concerns problems attributed to space trusses in the system: main truss – auxiliary 
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truss constituting the basic carrying structure of overhead cranes, built in the sixtieth of the previous 
century and being still currently exploited. The example of such structural solution is the truss box 
girder shown in Fig. 1. It is characterised by the main truss (2), to which the external load is applied, 
and the parallel to it auxiliary truss (3). Both trusses are connected by transverse bars called wind 
beams (5), and by skew bars called struts (4). 

The aim of the paper is to indicate in which way the carrying capacity of the space truss, which 
constitutes the box girder, is changing with an increase of transverse and skew bars stiffness. 
Analytical methods as well as numerical ones will be applied for calculations. 

 
Fig. 1. Truss box girder: 1 – truss box girder, 2 – main truss, 3 – auxiliary truss, 4 – skew bars, 5 – transverse 

bars, 6 – frontal beams 
Rys. 1. Kratowy dźwigar skrzynkowy: 1 – kratowy dźwigar skrzynkowy, 2 – krata główna, 3 – krata pomocni-

cza, 4 – wykratowanie ukośne, 5 – wykratowanie poprzeczne, 6 – czołownice 
 
 
2. REVIEW OF THE APPLIED  METHODS 
 

The idea lying behind the research concerning space trusses, in the previous century, was the will 
to simplify the necessary calculations while retaining satisfactory accuracy. Attempts to develop the 
simplified analytical methods for the space trusses in systems: main truss-auxiliary truss were 
undertaken by many outstanding researchers. Among them A. Blum [1], as the developer of the 
computational method, should be mentioned. Presently numerical methods utilising the calculation 
power of computers are more and more often used. The most often the finite element method (FEM) is 
applied. Both methods will be presented in this paper. 
 
2.1. A. Blum’s method 
 

A. Blum’s method was selected for the analytical calculations since it considers problems related to 
the space work of the box girder in a comprehensive way. A point of departure for the method was 
assuming such static structure diagram, which in an accurate way will resemble its space work 
character. A real transverse deformation of the structure under an influence of the vertically applied 
force P is presented in Figure 2a. On this basis the simplified diagram used in this method was 
assumed (Fig. 2b). Then, it was assumed that both carrying trusses will be considered as beams freely 
supported but connected with each other by crosswise and skew truss members. The articulated fixing 
of transverse and skew beams with the auxiliary truss and the rigid junction with the main truss – were 
assumed. The bar structure of the box girder presented in Fig. 3 was assumed for the theoretical 
considerations. As the result of the bar structure deformation caused by the vertical force P, applied in 
the main truss plane, the interaction of both carrying structures (main and auxiliary trusses), which are 
connected by crosswise and skew trusses, occurs. The interaction moment of the main truss transfers 
itself on the connecting trusses in a form of unknown moments xi.. The auxiliary truss is loaded by a 
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system of transverse forces:  (bi is the length of the bar, which joins the carrying trusses) applied in 
joints. The main truss is loaded by external force P and by transverse forces of the auxiliary truss 
interaction with the main truss: . The considered dependencies are presented in Fig.4. 

 
Fig. 2. a) Real deformation diagram of a box girder, b) Computational diagram of A. Blum’s method 
Rys. 2. a) Schemat deformacji rzeczywistej dźwigara, b) Schemat obliczeniowy metody A. Bluza 
 
where: Iy - vertical displacement of the main truss, caused by a vertical load applied in the main truss 

Plane, IIy - vertical displacement of the auxiliary truss caused by a vertical load applied in the 

main truss plane, ,i ib w - length of transverse and skew beams 
 

 
 
Fig. 3. Theoretical bar structure of the box girder 
Rys. 3. Teoretyczna konstrukcja prętowa dźwigara skrzynkowego 
 

Each bar of the transverse coupling sustains rotation resulting from unequal displacements of both 
load carrying trusses. The angle of rotation of the chord of the deformed bar axis, being the result of 
unequal displacement of its fixing in both trusses, can be estimated, on the grounds of the 
displacement method, by equation 1 (see Fig.2.b). 

ik

ki
ik b

yy −
=θ                                                                     (1) 

where: ikb - bar length ik, ,i ky y - vertical displacements of points: i,k, ikθ - angle of rotation of the chord 
of the deformed transverse bar axis. 
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Fig. 4. Static computational diagram of A. Blum’s method  
Rys. 4. Statyczny schemat obliczeniowy metody A. Bluma 
 

In the case of the considered structure of the truss box girder, each bar of transverse and skew 
trusses is loaded with an unknown supernumerary moment xi (Fig. 5), being the result of not the same 
displacement of both carrying trusses. 

 
Fig. 5. Truss member loaded by the interaction moment 
Rys. 5. Pręt wykratowania obciążony momentem oddziaływania 
 

On the basis of the method of displacements for the considered structure the general equation for 
the interaction moment xik obtains the following form: 

 

 ( )ki
ik

R
ik

ik

R
ik yy

b
EJ

b
EJx −== 2

33 θ                              (2) 

 
where: ikx - interaction moment in joint i of bar ik, RJ - inertial moment of the cross-section of the 

transverse or skew trusses versus neutral axis 
The successive step constitutes the determination of equations describing interaction moments 

occurring in the structure. This is being done by a separate analysis of blocking cross-sections of the 
truss, in taking into account their displacements. The following equations system was obtained for the 
model used in calculations: 
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where: '
1y , '

2y are displacements of points 1 and 2 of the main truss under an influence of internal 

forces; 1Py , 2Py are displacements of points 1 and 2 of the main truss under an influence of 

external force P; ''
1y , ''

2y are displacements of points 1 and 2 of the auxiliary truss under an 
influence of internal forces. The positions of points 1 and 2 in the structure are seen in Fig. 6. 

 

 
 

Fig. 6. Points 1 and 2, for which the displacements are calculated 
Rys. 6. Punkty, dla których obliczane są przemieszczenia 

 
The further analysis requires calculations of those displacements. The way of their detailed 

definition can be found in the reference [1]. Displacements yik were substituted by products of 
elementary displacements ikδ and the relevant forces. This leads to a significant increase of the volume 
of the mathematic notation. Therefore, it is more convenient to present the final notation in the matrix 
form:  

 
[ ] { } { }wyA =⋅
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Individual components of equation (4) assume a form: 
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where:  - displacement of point k under an elementary load applied in point I k - ratio of the 

equivalent moment of inertia of the main truss to the equivalent moment of inertia of the 

(5)
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auxiliary truss, kr – ratio of the equivalent moment of inertia of the main truss to the moment 
of inertia of individual bar of transverse truss versus its neutral axis, P - external load w,b,m – 
structure dimensions 

 
The rearrangement details leading to obtaining the matrix form can be found in the reference [1]. 
 

2.2. Finite Element Method 
 

The Finite Element Method (FEM) has its origin in the structure analysis. An undoubted merit of 
this method is its universality in solving problems of a complex geometry. A short explanation of the 
method is given below. 

The analysed zone is divided into a certain, finite number of simple geometrical elements, the so-
called finite elements. It is assumed that they are interconnected in the finite number of points being in 
the perimeters. The most often these are corner points (nodes).  

 
 

Fig. 7. Discretised zone (divided). Visible nodes 
Rys. 7. Obszar poddany dyskretyzacji (podziałowi)  

 
Then certain functions explicitly determining the distribution of the analysed physical quantity 

inside finite elements, dependent on values of these physical quantities, are chosen. These functions 
are called nodal functions or shape functions. Differential equations describing the investigated effect 
are rearranged by means the so-called weight functions to equations of the finite element method 
(algebraic equations). On the basis of equations of the finite elements method, values of coefficients 
being at unknowns and the corresponding values of the right members are calculated. If the task being 
solved is unstable, then in the calculation of right members the initial conditions are additionally 
utilized. The number of equations in the system is equal to the number of nodes multiplied by the 
number of degrees of freedom occurring in the individual node, it means the number of unknowns 
occurring in the individual node. The boundary conditions are introduced into the system of equations 
by performing the appropriate modifications of the coefficients matrix of this system and the right 
vector members.  

Then the system of equations is solved and values of the needed physical quantities in nodes 
obtained. In dependence on the type of the problem being solved the additional values are calculated 
(energy, forces). If the task is not stable these activities are repeated, starting from the calculations of 
coefficients at unknowns up to the moment of fulfilling the condition of ending the calculations.  This 
can be e.g. the determined value of the physical quantity in one of the nodes. 
 
 
3. ANALYTICAL CALCULATIONS OF SPATIAL BAR SYSTEMS WITH THE  
    APPLICATION OF THE SIMPLIFIED CALCULATION METHOD 
 

In order to verify in which way, the rigidity of truss members joining the main and the auxiliary 
truss of the box girder, influences the main truss unloading (it means which part of a load is 
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transferred from the main truss into the auxiliary one), the representative truss group, of similar 
dimensions, the same structural sections forming the main and auxiliary trusses and shape elements of 
various cross-sections for the transverse and skew trusses, should be analysed. The above assumptions 
warrant, that different results obtained by calculations for individual cases will be only dependent on 
the transverse and skew trusses.  

Five various trusses were selected for the analysis. Such number of analysed objects allows to  
draw - with a good accuracy - the dependence between the truss members ridigity, and unloading the 
main truss. Trusses are marked: K1, K2, K3, K4, K5. The dimensions of trusses comply to the real ones 
with structures which can be met in industry. The shaped elements were selected in such a way that - 
at the assumed external load 100 [kN] - the stresses occurring in structures would not exceed the 
permissible values. Overall dimensions of the analysed trusses as well as notations of shaped elements 
were presented in a simplified way in Fig. 8. The structural sections dimensions, common for all five 
structures, are in Table 1. 

Table 1 
Structural sections of the analysed trusses 

 

AGG AGD AGW AGS APG APD APW APS 
T-bar  
I 400 

T-bar  
I 400 

Double 
 T-bar L60x60x6 

T-bar 
L80x80x86 

T-bar 
L75x75x8 

T-bar 
L75x75x8 

Double 
T-bar 

L25x25x3 

T-bar  
L30x30x5 

 
Table 2 contains the dimensions of the structural sections of transverse and skew trusses, which are 

changing for individual structures. 
 

                                                                                                                                        Table 2 
Structural sections of individual trusses 

 

Symbol Truss K1 Truss K2 Truss K3 Truss K4 Truss K5 
AW T-bar 

L50x50x6 
T-bar 

L60x60x5 
T-bar 

L65x65x7 
T-bar 

L90x90x8 
T-bar 

L100x100x8 
 
 

 
 

Fig. 8. Analysed truss together with structural sections, markings and dimensions 
Rys. 8. Analizowana kratownica wraz z oznaczeniami kształtowników i wymiarami 
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3.1. Analytical calculations on the example of truss K1 
 

Analytical calculations were performed on the example of truss K1. The kind of the crosswise and 
skew truss members were taken from Table 2. Dimensions of the remaining structural sections are 
given in Table 1. The remaining dimensions, necessary for calculations, are given in Table 3.  

 
Table 3 

Data necessary for calculations. Truss K1 
 

Load of the 
truss  

Transverse bar 
length (wind beam)  

Skew bar length 
(strut) 

Transverse bar 
length  

Cosinus of the angle 
between skew and 

transverse bars 
P=100 [kN] w=2,2361 [m] m= 1,4142 [m] b=1,0 [m] =0,707 

 
The equation system derivation method, which allows to calculate the interaction moments was 

presented in Chapter 2.1. For the analysed case the equation system obtains the following form: 
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The equation system (8) was reduced to the matrix: 
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where: - displacements of point k under an elementary load applied in point i, calculated by a 

simple software, k - ratio of the equivalent moment of inertia of the main truss, to the 
equivalent moment of inertia of the auxiliary truss, kr - ratio of the equivalent moment of 
inertia of the main truss to the moment of inertia of individual bar of transverse truss versus its 
neutral axis, P - external load of a value of 100 [kN], w,b,m - structure dimensions from  
Table 3. 

 
 
 

(6)

(7)
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Introducing the numerical values into the matrix notation (7) we obtain: 
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Applying dependence:  (where y is a columnar vector containing the looked for 
values of interaction moments) matrix (8) was transformed and solved by means of the MATLAB 
software. The calculated values of the interaction moments of the main truss 1K  on the auxiliary one 
are given in Table 4. 

Table 4 
Interaction moments values. 

 

X1 X2 X3 X4 X5 X6 

0,8605 [kNm] 0,2156 [kNm] 1,0165 [kNm] 0.2156 [kNm] 0,5083 [kNm] 0,8605 [kNm] 

 
The total force relieving the main girder of truss 1K was calculated as a sum of all components of force 
of internal influences: 
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After substitution into equation (9) the results from Table  4 and the data from Table 3: 
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Relieving of the main truss (percent):
 

       
%22,6100

0,100
21992,6100 =⋅=⋅

P
Podc

                                                   
(10) 

where: odcP - resultant relief force. 
 

For the applied transverse and skew truss members L50x50x6 the total unloading force constitutes 
6,22% of the external load applied to the main truss of truss K1. Knowing values of the external force 
and transverse forces it is possible to calculate axial forces occurring in the analysed structure. This is 
the necessary step allowing to compare the results obtained by the analytical method with the results 
of the numerical one.  

 
 

4. NUMERICAL ANALYSIS 
 

The aim of the numerical analysis is the comparison of the obtained results with the result of the 
ANSYS 12.1 program utilising the finite element method. The creation of the structure space model in 
the ANSYS program is necessary for the calculations.  

Two types of elements were chosen from the ANSYS library: BEAM 188 – which was used for 
representing beam elements joint rigidly and LINK 180 – for modelling elements with articulated 
joints (in accordance with the assumptions of the analytical method). Then the structural material was 
defined by the Young’s modulus and Poisson ratio for steel. By means of the window of the „Common 
Sections” program, the structural sections out of which the structure was built, were defined by 
choosing the shape type and determining its all transverse dimensions. The three-dimensional structure 
model was formed by depositing characteristic truss points on the plane. They were joined by lines 

(8)

(9)
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into the structure representing the analysed object structure. The finished elements network for the 
analysed model was generated by means of the tool: „MeshTool”. In accordance with the assumed in 
Chapter 3 guidelines, the truss was loaded by a force of 100 [kN], fixed in four supports. In 
accordance with the A. Blum’s method it was deprived from the displacement possibility in x direction 
perpendicular to the external load (this displacement was not taken into account in the analytical 
method due to its small influence on the calculation result).  

 

 
 

Fig. 9. Numerical truss model. Taking readings of the analytical results 
Rys. 9. Numeryczny model kratownicy. Odczytywanie wyników analizy 
 
 
5. ANALYSIS OF THE OBTAINED RESULTS 
 

The results obtained by the numerical analysis are listed together with the ones obtained by the 
analytical method. Numerations of individual bar elements are presented in Fig. 10 and Fig. 11. An 
introduction of these numbers will allow to associate the obtained results with an individual truss 
member.  

 
 

Fig. 10. Numeration of bar elements of the main truss  
Rys. 10. Oznaczenia elementów prętowych dla kraty głównej kratownicy 

 

 
 
Fig. 11. Numeration of bar elements of the auxiliary truss 
Rys. 11. Oznaczenia elementów prętowych dla kraty pomocniczej kratownicy  
 

Table 5 contains lists of axial forces occurring in all truss K1 bars calculated by the analytical and 
numerical method. 

The obtained numerical calculation results indicate that the relieving (that is also the load carrying 
strength) of the main truss increases non-linearly with the rigidity of the crosswise and skew bars. This 
dependency in a diagram form is seen in Figure 11. For bars of the truss L50x50x6 (kr=22809) of a 
low rigidity (in relation to the main truss rigidity) the analytical method indicates the main truss relief 
(which means unloading ) at a level of 6,22%. For bars L100x100x8 (kr=2023) this reliew increases to 
15,5%. For bars of the truss L50x50x6 (kr=22809) of a low rigidity (in relation to the main truss 
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rigidity) the numerical method indicates the main truss relief at a level of 3,5%. For bars L100x100x8 
(kr=2023) this relief increases to 9,6%.  
 Table 5 

Calculation results obtained for  truss K1 by the numerical and analytical method  
 

Element 
number 

Numerical 
method [kN] 

Analytical 
method [kN] 

1 1,128 0 
2 172,965 187,56 
3 173,984 187,56 
4 172,124 187,56 
5 169,624 187,56 
6 1,681 0 
7 -95,771 -93,78 
8 -95,738 -93,78 
9 -251,509 -284,79 
10 -250,779 -284,79 
11 -84,523 -93,78 
12 -95,179 -93,78 
13 -48,270 -46,890 
14 2,27 0 
15 -3,585 -0,860 
16 -80,616 -98,43 
17 -3,849 -0,8605 
18 3,180 0 
19 -48,776 -46,890 
20 104,751 104,85 
21 -102,604 -104,85 
22 82,468 108,7 
23 81,282 108,7 
24 -101,173 -104,85 
25 105,797 104,85 

 

Element 
number 

Numerical 
method [kN] 

Analytical 
method [kN] 

26 2,782 0 
27 14,351 12,44 
28 34,061 12,44 
29 34,075 12,44 
30 19,152 12,44 
31 8,769 0 
32 -1,556 -6,22 
33 -1,561 -6,22 
34 -38,343 -14,831 
35 -38,416 -14,832 
36 -3,273 -6,22 
37 -3,266 -6,22 
38 -0,602 -3,11 
39 0,065 0 
40 -0,008 -0,9569 
41 -0,006 -1,016 
42 -0,070 -0,9569 
43 0,138 0 
44 -0,028 -3,11 
45 2,134 6,954 
46 -10,689 -6,954 
47 10,552 2,675 
48 -10,531 2,677 
49 -10,779 -6,954 
50 0,75 6,954 

 

  

 
Fig. 12. Relieving of the main truss as a function of the rigidity of bars of the analysed trusses (a higher value of 

coefficient kr corresponds to a smaller cross-section of the bar) 
Rys. 12. Odciążenia kraty głównej w funkcji sztywności prętów wykratowania analizowanych kratownic 

(większa wartość współczynnika kr odpowiada mniejszemu przekrojowi poprzecznemu pręta) 
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6. CONCLUSIONS 
 

Non-linear increase of the structure load-carrying capacity can be utilised in industry. An example 
of the practical application of the results could be an exchange of truss bars of over-head crane bridge 
or crane beams increasing significantly the structure load-carrying strength.  

Differences between the results obtained by two considered methods can be explained by 
simplifications arising from the analytical method assumptions, as well as from simplifications in 
building the model used in the FEM. The method of increasing the load-carrying strength of truss 
bridges of overhead cranes by transferring a part of a useful load from the main truss on the auxiliary 
one was illustrated by means of the diagram in Fig. 12. The essential feature of this method is a 
significant relief of the main truss which allows to increase the load-carrying strength of the crane. In 
the case of the truss bridges, made of rolled sections containing non-metallic inclusions and exploited 
for many years, the method allows to limit significantly the development of lamellar cracks in the 
main truss by decreasing the stress gradient acting on it. 
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