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ON BI-CRITERIA TWO-STAGE TRANSPORTATION PROBLEM: A CASE
STUDY

Summary. The study of the optimum distribution of goods between sources and
destinations is one of the important topics in projects economics. This importance comes
as a result of minimizing the transportation cost, deterioration, time, etc. The classical
transportation problem constitutes one of the major areas of application for linear
programming. The aim of this problem is to obtain the optimum distribution of goods
from different sources to different destinations which minimizes the total transportation
cost. From the practical point of view, the transportation problems may differ from the
classical form. It may contain one or more objective function, one or more stage to
transport, one or more type of commodity with one or more means of transport. The aim
of this paper is to construct an optimization model for transportation problem for one of
mill-stones companies. The model is formulated as a bi-criteria two-stage transportation
problem with a special structure depending on the capacities of suppliers, warehouses and
requirements of the destinations. A solution algorithm is introduced to solve this class of
bi-criteria two-stage transportation problem to obtain the set of non-dominated extreme
points and the efficient solutions accompanied with each one that enables the decision
maker to choose the best one. The solution algorithm mainly based on the fruitful
application of the methods for treating transportation problems, theory of duality of linear
programming and the methods of solving bi-criteria linear programming problems.

O DWUKRYTERIALNYM, DWUETAPOWYM PROBLEMIE
TRANSPORTOWYM: STUDIUM PRZYPADKU

Streszczenie. Analiza optymalnej dystrybucji towaréw pomiedzy punktem
poczatkowym a koncowym jest jednym z waznych zagadnien w ekonomice projektow.
Ma to znaczenie jako wynik minimalizacji kosztow transportu, rozkladu przewozow,
czasu, etc. Klasyczny problem transportowy stanowi jedno z gléwnych zagadnien
programowania liniowego. Rozwigzaniem tego problemu jest uzyskanie optymalnej
dystrybucji towaréw z roéznych zrédel do roéznych punktéw przeznaczenia, co
minimalizuje catkowity koszt transportu. Z praktycznego punktu widzenia problemy
transportowe moga si¢ r6zni¢ od probleméw w formie klasycznej. Moga one zawieraé
jedna lub wiecej funkcji celu, jedng lub wiecej tras, jeden lub wigcej rodzajow towardw
przewozonych za pomoca jednego lub wigcej srodkoéw transportu. Celem artykutu jest
stworzenie modelu optymalizacyjnego, ktoéry rozwigzuje problem transportowy dla jedne;j
z firm przewozowych, specjalizujacej si¢ w przewozie kruszyw. Model jest
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sformutowany jako dwukryterialny, dwuetapowy problem transportowy w celu
pozyskania zbioru ekstremow lokalnych oraz skutecznych rozwigzan zwigzanych z
takimi, ktore pozwalajg osobie podejmujacej decyzje wybra¢ te najodpowiedniejsze.
Algorytm rozwigzania bazuje glownie na efektywnej aplikacji metod rozwigzywania
problemoéw transportowych, teorii dualizmu programowania liniowego oraz metodach
poszukiwania rozwigzan dwukryterialnych problemow programowania liniowego.

1. INTRODUCTION

The classical transportation problem (TP) refers to a special class of linear programming problems.
In a typical problem, a product is to be transported from m sources to n destinations and their
capacities are aj, a, ...., ay and by, b,...., b, respectively. In addition there is a penalty c;; associated
with transporting a unit of product from source i to destination j. This penalty may be cost, delivery
time, deterioration, or safety of delivery, etc... A variable x; represents the unknown quantity to be
shipped from source i to destination j.

In real life situations, the transportation problem usually involves multiple, conflicting, and in-
commensurate objective functions. This type of problems is so called multi-objective transportation
problem (MOTP). The solution of this problem is called a non-dominated solution (if we refer to the
objective function) and an efficient solution (if we refer to the decision variables space) [1]. Each of
them is defined as follows:

Definition 1.1 (Non-dominated solution; Ringust and Rinks [2]. A feasible vector x° e S(sis a
feasible region) yields a non-dominated solution of (MOTP), if and only if, there is no vector

X € S such that Z. IZJI ij Xij —Z Z, 105)(3 VK and Z. 12,1 ij Xij <Z. 12,1 i Xij for

some k).
Definition 1.2 (Efﬁcient solution' Steuer [3]. A point X° € Sis efficient iff there does not exist another

X € S such that Zfl i X; —Z_Z, CiX5 VK and D 12, S G X ¢Z_1ZJ L Ci X for

some k. For more detalls, see [3] pp. 148-149.

In the literature solution approaches for OTP are classified into four categories [1]: Interactive
approach, non-interactive approach, goal programming approach and fuzzy programming approaches.
Each category has its advantages and limitations. Aneja and Nair [4] studied a bi-criteria TP. Diaz
[5,6], Iserman [7], and Kasana [8] developed different approaches to generate the set of efficient
solutions. The solution procedure of these methods depends on determining the set of efficient
solutions and finally the DM is responsible for selecting the preferred solution out of this set. Also in
real life situations, the transportation processes may not operate always directly among suppliers and
customers. It may done in two or multiple stages. Some approaches for solving such transportation
problems are listed in [9], [10], and [11]. In [10], the formulation of different multistage transportation
problems and an algorithm for solving a class of them are presented this class can be solved using the
decomposition technique of large scale linear programming utilizing the special nature of the
transportation problems. In [11], different formulations of two-stage transportation problem depend on
the relation between capacities of suppliers at first stage, capacities of warehouses at first stage which
are the suppliers of the second stage, and requirements of customers at second stage. The algorithm of
solving such problems is also presented in [11]. This algorithm based on a duality theory.

In this paper, we introduce the mathematical formulation of the transportation for one of mill-
stones companies which is a bi-criteria two-stage transportation problem. The relation between the
summation of average capacities of main stores from wheat which must be transported to mill-stones

(Zai ) and summation of average capacities of mill-stones itself ( zek ) for the first stage, and the

summation of average requirements of sub-stores and customers (zb j ) make the mathematical

formulation of the problem takes one of mathematical forms which are presented in [11] but with two
objective functions. The company’s DM needs to introduce a solution algorithm which gives the set
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of non-dominated extreme points and its related set of efficient solutions where the DM is responsible
for selecting the preferred solution out of these sets. We introduce the mathematical formulation of the
problem and the solution algorithm. The presented algorithm consists of two phases, phase I based on
the algorithm presented in [4] by aneja and Nair to generate the set of non-dominated extreme points
and its related efficient solutions for bi-criteria linear programming problems in general. Phase II is a
modification of the algorithm presented in [11] to solve our class of two-stage transportation problem.

2. CASE STUDY

2.1. Problem description

The transportation problem of one of mill-stones companies is a bi-criteria two stage problem.
There are 4 sources (main stores) and 6 warchouses (mill-stones), at the first stage. The second stage
contains 6 sources (mill-stones) and 9 destinations include sub-stores and customers. The problem
includes 2-objective functions; minimization of transportation cost and minimization of transportation
deteriorations.

2.2. Problem formulation

The problem takes the following form:

4 6 6 9 6 6 9
_ 1l 2,2 o _ 1l 2,2 .
Minimize Z, = chik Xik +chijki , Minimize Z, = zdikxik +szkj Xy | Subj.to
k=1

i=1 k=1 k=1 j=I i=1

6 4
Z Xilk =a,,1=12,3,4; (1); Z Xilk =e.,1=12,.,6; )
k=1 i=1
9 6
D X = k=12,.6; 3); D oxg=b;,j=12,.9; 4)
j=1 k=1
XicsXig 2 0, i=1,2,3, 4: k=12,....6; and j=1,2,....9. (5)
Where:

1 1 . . . . .
Cik » d ik : transportation cost and transportation deterioration for first stage, i=1, 2, 3, 4; k=1,2,., 6;

2 42

Cyi» d K : transportation cost and transportation deterioration for second stage, k=1, 2, ..., 6; j=1,2,...,
9; , e capacities of warehouses k, k=1,2,.,6;

a;: capacities of suppliers i, i=1,2, 3,4; , b;: requirements of destinations j, j=1,2,.,9.

2.3. Data collection
Tab. 1

[lustrates transportation costs, transportation deteriorations (in unit cost per ton) inside table
cells, capacities of suppliers (in ton) and capacities of warehouses (in ton) for the first stage

Mill stones
W1 Wz W3 W4 W5 W6 Availabilities

Main Stores
S 0, 0) O, 1) | (12,3) | (15,4) | (18,5) | (21,6) 4350
S, 12,3) | 9,2) (0, 0) 9,2) | (12,3) | (15,4) 5340
S; (15,4) | (13,3) | (9,2) 0, 0) 9,3 (12, 4) 5320
S4 (22,5) | (20,5) | (17,3) | (13,2) | (11,2) 9,2 4017
19027

Requirements 2900 2624 3560 4213 3729 4011

21037
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Tab. 2
Illustrates transportation costs, transportation deteriorations (in unit cost per ton) inside table cells,
capacities of warehouses (in ton) and requirements of destinations (in ton) for the second stage

Mill stones Availa-

D, D, D; Dy Ds Dg D, Dg Dy bilitics

Main Stores
W, (15, (21, | (22,

9,2) | (0,0) | (9,1) | (11,2) | (12,3) 4) (18, 5) 6) 5) 2900
Ve en | eo|en| e | G lasy| G| Q] 2
Wi (13, (15, | (17,

4) (123) ] 92) | 92) | (0,0) | (9,2) | (12,3) 4) 3) 3560
Wa (16,3) | (15,4) | (13,3) [ (11,4) | (9,2) (0,0) | (9,3) (41“;" (5’ 4213
Ws (19,5) | (18,5) | (15,2) | (14,3) | (12,3) | (9,3) | (0,00 | (9,2) (;)1’ 3729
We (22,5) | (21,6) | (19,3) | (17,4) | (15,4) (Alé (9,2) | (0,0) | (9,2) | 4011

21037
Requirements | 910 | 2853 | 2594 | 1466 1759 2848 | 1389 | 2136 | 1424
17379

From the collected data, the relation between capacities of suppliers a;, i=1, 2, 3, 4; capacities of
warehouses ey, k=1, 2, ..., 6; and requirements of destinations b;, j=1, 2, ,9 takes the following
relation:

9 4 6
D b;(17379) < > 2,;(19024) < > "e, (21037)
j=1 k=1

i=1

. a e b,
From the relation betweenZ r, Zk: k. ZJ: ), the problem cannot be solved as a two-separated

bi-criteria single stage transportation problem so it could be solved as a bi-criteria linear programming
problem or by using our presented algorithm. This algorithm is based on the algorithm presented in
[11] to solve unbalanced cases of single-objective two-stage transportation problems and the algorithm
presented in [4] to obtain the set of non-dominated extreme points in the objective space of bi-criteria
single stage transportations.

3. ASOLUTION ALGORITHM

In the following, we describe an algorithm for solving a class of bi-criteria two-stage transportation
problems with the relation between capacities of suppliers (a;), capacities of warehouses (ex) and

n m K
requirements of destinations (b;) is: (Zb i< Zai < Zek ). The solution algorithm is divided into
j=1 i=1 k=1

two phases:

Phase (I): Determines the set of non-dominated extreme points in the objective space for bi-criteria
transportation problems. Phase (II): Determines the optimal solution of a class of two-stage
transportation problems. The proposed solution algorithm can be summarized in the following steps.

Phase (1):
Step (1):

Find two dual forms, one dual form for each single objective two-stage transportation problem. Use
the variables (u; , vi) and (v'x , w;) for the dual problems of the first and the second stages respectively.
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Step (2):

Go to Phase (II), find the optimum solution for the two-stage problem with the first objective
function Z,"" = min (Z, | x € M). Then calculate Z,"") = min (Z, | Z=27," and x € M). Seth = 1.
Similarly, go to Phase (II), find the optimum solution for the two-stage problem with the second
objective function Z,) = min (Z, | x € M). Then calculate Z,'” = min (Z, | Z=7,” and x € M).

If (2,?, 2,%) = (2,"", Z,"V) stop. Otherwise, record (Z,*’, Z,”)) and set h= h+1.
Define sets L = {(1,2)} and E=¢

Step (3):

Choose an element (r,s) € L and set o, = | 7, - 7,0 | and o, = | 2,9-7,9].
Prepare the problem using the new objective function as follows:

m k K n
. =1 1 =22
min (3> CiXic + 2,2 CiXg) | ST. x €M, x>0,
i=1 k=1 k=1 j=1
=1 _ (r,s) Al (r,s)q1 =2 _ (r,s)~2 (r,s) 42
Where: Ci = (a7 +ay7dy), Cy = (a7 +aydy)
Find the dual form of the new problem.

- 72
Go to Phase (I1), obtain the optimum solution of the new problem ( Xilk and Xy ).

. . . . vl 2 .
If there are alternative optima, choose the optimum solution Xix and X for which:

m K K n
(zzcilk Xic +chlfj Kkzj minimum).

i=1 k=1 k=1 j=1

> 3 1ol SR > T S 202

Let: £1 = zzcikxik +chijkj ; Z, ZZZdikXik +Zdeijj
i=1 k=1 k=1 j=1 i=1 k=1 k=1 j=1

If ( Z, , Z, ) equal (Zl(r), Zz(r)) or (Zl(s), ZZ(S)), setE=E U {(r,s)}and go to step (4).

Otherwise, seth=h + 1, record (Zl(h) , sz)) such that Z,"=Z, and Z," = Z, andsetL=L
U {wh). (hs)}.

Step (4):
Set L =L - {(r,s)}. If L = ¢, stop. Otherwise, go to step (3).

Phase (I1):
Step (1):

Find the initial basic feasible solution for the second stage of the problem using anyone of the
methods which are used in the classical transportation problems. Add a fictitious customer Oyg,... due

to unbalancing between Zk:ek and ZJ: b‘ for this stage. Also, find initial basic solution for the

.. . g.and ) a
first stage; add a fictitious source Mg due to unbalancing between Zk: k ZJ: .
Step (2):

Based on step (1), construct a generalized table (Tab. 3) includes the two-stage problem, where the
rows in the upper part represent constraints of suppliers at first stage (constraints (1)). Rows in the
lower part represent constraints of destinations at second stage (constraints (4)). Every column
represents two types of constraints, in the upper part constraints of warehouses at first stage
(constraints (2)) and in the lower part constraints of warehouses at second stage (constraints (3)).
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Step (3):

For the upper part of the table, check all cells in the Mg, column. If any of the cells has a value
greater than zero (i.e. if Xi1 > 0), set appropriate u;=0. Also, for any cell in the upper part of the table
with a value greater than zero (Xj > 0), set relevant U +V = Cic for the problem with the first

.. —d! . N =1 .
objective or U; Vi = di for the problem with the second objective or Cik for the problem with the
new objective.

For any cell in the Og row under k column has a value greater than zero, put relevant V¢ + Vu; =0 R
(e Vi = V).

For any cell in the lower part of the table with a value greater than zero (Xé > 0) ,
putVL Wy = lej for the problem with the first objective or dk2j for the problem with the second

=2
objective or Cyj for the problem with the new objective. In case that the problem is not degenerated, we
fill (m+2K-+n) cells (where (m) is the number of suppliers, (K) is the number of warehouses and (n) is

the number of destinations). Calculate values of u;, vy, Vi, and wi.

Step (4):

If all calculated values u;, vi, Yk, and w; satisfy the constraints of dual problem, the calculated
solution in the generalized table is the optimum solution of the problem, return to Phase (I). If there is
at least one constraint of the dual problem is not satisfied, the calculated solution in the generalized
table is not optimum.

Step (5):

In case that the calculated solution is not optimum, like in the classical transportation problem, fill
a cell in which is the optimum criterion mostly disturbed and find a closed loop of changes associated
to this cell by the following process:

., u + V < Cl . . .
o If the conditions Yi T Vi = L for the problem with the first objective or
1 =1
U; +V, = dj for the problem with the second objective or Ci for the problem with the new
' 2 2
objective; or Vi +Wj < Cyj for the problem with the first objective or d kj for the problem with

=2
the second objective or C;j for the problem with the new objective, are disturbed, fill relevant
cell of the upper or lower table.

) If any of conditions Vi t V|'< <0js disturbed, fill relevant cell in the row Ogg;.

) If any of conditions U <0 jg disturbed, fill relevant cell in the column Mg.
Step (6):

At a closed loop passing through the middle row of Ogg, this cell belongs also to vertexes of the
closed loop, and it has an opposite sign as the vertexes in upper and lower part of the table. Separate
the found loop into two semi-loops and from the values at negative signs choose the minimal one and
add it to all values at positive signs and subtract all values at negative signs of the closed semi-loop.
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Step (7):

Return to step (3) and after a finite number of iterations, we find the optimum solution.
The solution algorithm is illustrated in the flow-chart Fig. 1.

Find two dual forms for the problem. one for each objective function

I

Go to phase IT and solve the problem with each objective and
calculate cach of (Z®.Z®)and set h =1 and calculate (Z”.Z)

Record(ZP.ZP), (zP.Z7) . Set h=h+1, L= {(1.2)},E=¢

Choose an element (1. s) € L and generate new objective and
new dual form. Go to Phase (II) to caleulate (Z;.Z,)

Set
E=Eu{rs}

Set h=h+1. Record Z;". Z} . Set L =L {(r.h).(h.s)}

Y

Set L=L—{(r.s)}

Y

Fig. 1. The algorithm of solution
Rys. 1. Algorytm rozwigzania problemu
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4. SOLUTION OF THE CASE STUDY

4.1. Primal form of the problem

Based on the collected data, the transportation problem of the Mill-Stones Company takes the
following mathematical formulation:

Minimize Z; = 0X{, + 9%, + 12X, + 15X/, + 18X/ + 21X/, +

12X, + 9%}, +0X); + 9%y, + 12X} + 15X}, +

155, +13X3, +9%3, +0X3, +9X35 + 12X}, +

22X}, + 20X}, +17X,, +13x}, + 11X, + 99X, +

OX7 +0X5, + 9% + 11X, +12X75 + 15X, + 18X, + 217, + 22X, +
9X3, +9X3, +0X3, +9%5, +9x3, +13%3, +15X5, +19%5, + 205, +

13%3, +12X3, +9X3, +9X3, +0X3s +9X5, +12X5, +15X5, +17X5, +

16X;, +15x%5, +13x5, +11x5, +9X3 + 0}, + 9%, +12%5, + 135, +
19%2, +18x2, +15x2, +14X2, + 12X +9X2, +0xZ, +9xZ, +11x2, +

22%2 +21x2, +19% +17X2, + 15X + 12X + 9%, + 0X5s + 9%,

. Al | | 1 1 |
Minimize £, = 0%, +1X;, +3X;5 +4X;, + 5X;5 +6Xs+

Subject to:

3X), +2X5, +0Xd; + 2%, + 33X +4Xa, +
AXY, +3X5, + 2%, +0X3, + 33X +4X5, +
1 1 1 1 1 1
5Xy4y + 5%y, +3Xy3 +2Xyy +2X,5 +2X,6 +
2X7 + 00X, +IX7 + 2X0, + 33X + 4% + 5% + 6% + 5% +
2 2 2 2 2 2 2 2 2
IX5, +1X5, +0X5; +1X5, +2X55 +3X5 +2X5; +3X55 +5X59 +
A3 +3X5, +2X5, +2X3, +0X5, + 2X5, +3X5, +4X5, + 3%, +
3X:, +4X5, +3X5, +AXE, +2X5 +0X5, +3X5, +4X5 +2X5, +
2 2 2 2 2 2 2 2 2
5X5, +5X5, +2X5; +3X5, +3X5s +3X5 +0X5, +2X5 + 2X5 +
SXZ, + 06X, +3X5 + 4%, +AXE + AKX + 2% +0X + 2%,
1 1 1 1 1 1
Xp + X, + X5+ X, + X5 + X, =4350 ,
1 1 1 1 1 1
Xy + Xop + Xog + Xoy + Xo5 + Xp = 5340,
1 1 1 1 1 1
X3+ X3, + X535 + X3, + X35 + X5 = 5320 ,
1 1 1 1 1 1
Xg + Xgp + Xgy + Xgy + Xy5 + X =4017
1 1 1 1
Xip + Xy + X5, + Xy =2900
1 1 1 1
Xp, + X5 + Xq, + X, =2624 ,
1 1 1 1
Xi3 + X3 + X33 + Xg3 = 3560
1 1 1 1
Xig  Xoq + X5y + Xy =4213
1 1 1 1
Xis + X5 + X35 + X45 = 3729
1 1 1 1
Xig T Xog + Xzg + Xy = 4011,
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X0+ XD+ X X X X+ X+ X + Xy = 2900 |
2 2 2 2 2 2 2 2 2 _
X5+ X5, + X35 + Xy, + Xy + X5 + X5, + Xog + X5 = 2624 ,
X2+ X2 XA XA X+ XS+ X+ XA+ X2 =3560
31 32 33 34 35 36 37 38 39 5
2 2 2 2 2 2 2 2 2
Xgp + Xig + Xaz + Xgy + X5 + Xi + Xgp + Xgg + Xgg = 4213
X2, + X3 + X3 + Xoy + Xog + Xog + X3+ Xog + X3y = 3729,
Xoy + X3y + Xoy 4 Xy + X + Xog + Xoo + Xog + Xoy = 4011
2 2 2 2 2 2
Xpy + X5, X5+ Xy, X5+ X = 910’
2 2 2 2 2 2
Xj5 + X5, + X3, + X5, + X5, + X, = 2853’
2 2 2 2 2 2
Xj3 + X5 + X553 + X3 + X35 + X3 = 2594,
2 2 2 2 2 2
Xig F Xaq + X5y + Xy + X5 + Xg, = 1466
X2 4 X2+ XA X+ XA+ XA =1759
15 25 35 45 55 65 — 5
2 2 2 2 2 2
Xig T X5 + Xig + Xig + X5 + Xz = 2848 ,
X2 4+ X2 +x2 +x2 +x2 +x2 =1389
17 27 37 47 57 67 — .
X2 4+ X2+ XA+ X2+ XA + x5 =2136
18 28 38 48 58 68 5
X2+ X2 4+ X3 + X2+ X3 + x5 =1424
19 29 39 49 59 69 5

XicsXg 20, i=123 4; k=1.2,...,6; and j=1,2,....9.
4.2. Dual form of the problem with the first objective

By using the variables u;, vy, V;( , and wj the dual form of the primal problem with the first objective
function takes the following form:

Max.Q, =4350u, +5340u, +5320u, +4017u, +2900v, +2624v, +3560v, +4213v, +3729v, +
4011v, +2900v, +2624v, +3560v, +4213v, +3729v, +4011v, + 910w, + 2853w, + 2594w, +
1466w, + 1759w, + 2848w, + 1389w, + 2136w, + 1424w,

Subject To:

U +v, <0 U +v, <9 U +Vvy; <12 U +v, <I5 U +V; <18 U +Vg <21 u,+v, <12
U, +Vv, <9 Uy +Vv; <0 U, +v, <9 U, +Vs <12 U, +Vg <15 Uy +v, <15 u;+v, <13
U; +V; <9 U3 +V, <0 U +Vy <9 Uy +V <12 u, +v, <22 U, +Vv, <20 U, +V; <17
Uy +V, <13 U +V ST U +Ve <9 vi+w, <9 v, +wW, <0V, +W, <9 vy +w, <11
Vi+Ws 12 v+ W <15 v+ W, <18 v+ Wy <21 Vi +W, <22 v, +W, <9

Vo +W, SOV, W <0 v, +W, <9V, +W <9V, + W <13 v, + W, <15 v, + W <19,
Vo + W, 20 Vo +W, <13 vy +W, <12 vy +W; <9 v, +W, <9V, +W <0V, +W <9
VoW, <12 v+ W <15 v +W, <17 v, +w, <16, v, +W, <5 Vv, +W, <13

Vy +W, ST1 VW <9 v +W, <0 v +W, <9 v, +W, <12 v, +w, <13

Vs +W, <19 vi+w, <I8 vi+w, <15 vi+w, <14 vi+w, <12 vi+w, <9
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Vs +W, <O Vi +Wg <9 vo+w, ST v +w, <22 vo+w, <21 vo+w, <19
Ve + W, <17 Vo +Ws <15 ve+W, <12 vo+w, <9 v +w, <10 v, +W, <9

UpUy Uy, Vs Vo Ve, Vi Vo s Vg Wi, W e Wy ynrestricted.
4.3. Dual form of the problem with the second objective

By using the variables u;, vy, VL , and w;, the dual form of the primal problem with the second
objective function takes the following form:

Max.Q, = 4350u, +5340u, +5320u, +4017u, +2900v, +2624v, +3560v, +4213v, +3729v, +
1466w, +1759w; + 2848w, + 1389w, + 2136w, + 1424w,

Subject To:

U +Vv, <0 U +v, <1 U+Vy<3 U+v, <4 U +V;<5 U +V<6 U, +Vv, <3

Uy +V, <2 Uy +V; <0 Uy +Vv, <2 U, +V3<3 Uy +V <4 Uy +V, <4 Uy +V, <3
Uy +V; <2 Uy +V, <0 Uy +Vy <3 Uy +Vg<4 u,+V, <5 U, +V, <5 Uy +V; <3
Up+V, <2 U +Vs<2 U +Ve<2 V4w, <2 Vi +W, <0 V+W <T v, +w, <2
Vi+Ws 3 Vi +W <4 Vi+W, S5 VAW <6 VW <5 v +w, <1 v, +w, <1
VoW, SOV, +W, STV, +Wg 2V, + W <3V, +W, <2V, +Wg 3V, +W, <5
ViFW, <4 VoW, <3 VAW, <2 ViAW, <2 ViAW <0 VW <2 v+ W, <3
Vi + Wy <4 Vi +W, <3 v, +w, <3V, +W, <4V, FW <3 v, 4w, <4V, AW <2
Vit W SOV +W, <3V +We <4 VW <2 VoW, S5 Vo+W, S5 Ve +w, <2
Vs +W, 3 Vi +W <3 Vi +W <3 VoW, SO Vi FWe <2 Vo +W, <2 VW, <5
Ve +W, <6 Ve +Wy <3 Vo +W, <4 Vi+W <4 Vi+W <4 VoW, <2 Vo+W <0

Ve + Wy < 2, Up,Uy s Ug Vs Vs Vi, Vi Vo e, Vg, Wi, W s Wy ynrestricted.

4.4. Finding the optimal solution for the primal problem with the first objective function

After obtaining the initial solutions for both the second and first stages, the generalized table for the
two stages with the first objective function takes the construction illustrated in Tab. 3. From this table,
the optimum solution for the problem with the first objective is reached after certain number of
iterations by applying the stepping stone method same as in classical transportation problems. The
same procedure is repeated for the problem with the second objective to obtain its optimum solution.
The calculated solutions represent two different points from the set of non-dominated extreme points

in the objective space of the problem (Zl(l) 5 Zél) ), (Zl(z) > Zéz) ).
4.5. The coefficients of the new objective function

Coefficients of the new objective function (051( r’s),aér’s)) are calculated and the new form of the

problem is reached and its dual form and a new generalized Table are constructed. The optimum

solution of the new form is calculated with values of (Z ,Z, ) which represent a new point in the

objective space of the problem. By the same procedure and after a finite number of iterations, the set
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of all non-dominated extreme points in the objective space and their related efficient solutions will be
reached and concluded in Tab. 4.

Tab. 3
The generalized Table of the problem

Vi Vi V2 V3 V4 Vs Ve
Uj M, M, M; M, M; Mg Mt 4
u; D, 2900 1450 4350
u, D, 1174 3560 606 5340
u; D; 3607 1713 5320
Uy D4 2016 353 1648 4017
W, Oict 3658 b;
Wi O, 910 910
W2 0, 1990 863 2853
W3 0O; 1761 833 2594
Wy Oy 1466 1466
Ws Os 1261 498 1759
W Os 2848 2848
! 0Oy 867 522 1389
Ws Og 2136 2136
Wo Oy 1071 353 1424

Ck i C, C3 C4 Cs Cs

Vi V' V' V'3 V' V's Vv's

5. CONCLUSIONS

In this paper the mathematical formulation of our case study is introduced with its algorithm of
solution which gives the set of non-dominated solutions and its related set of efficient solutions. The
presented algorithm can be used for solving any b-criteria two-stage transportation problem from the
class of our case study in which the relation between capacities of suppliers (a;), capacities of

warehouses (ex) and requirements of destinations (b;) is (Z jbj < Zi a < Zk ) and with little

modifications for phase II, the presented algorithm can be used to solve any bi-criteria two-stage
transportation problem with any relation between (a;, e, and b;).

The solution algorithm gives the set of non-dominated solution and its related efficient solutions.
These solutions are illustrated in Tab. 4. The DM can select the preferred one of these solutions
according to the company policy for production and distribution.
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Tab. 4
Bi-criteria solution in the objective space and its related efficient solutions for the problem

Efficient Distributions (non zero values)

Iteration
—
sl
Recorded
Points

X, =2900, X}, = 1450, Xb= 1174, X33= 3560, X34=

2@ _ | 4213, Xis=65, Xis= 1324, Xig=2693, Xi\ =47, X, =

1.3),
2 ég 2)1 ® | (105496 | 2853, X3 =30, Xa3=2594, X3 = 335, X3s= 1466, X5s=

20763) | 1750, X2, = 498, X2o= 2848, 3= 867, X2 = 1389, X&=

2136, Xgo= 557

Xi1= 2900, Xi, = 1450, X3,= 1174, X33= 3560, X34 =
ZD= | 4213, X35= 1107, Xas=282, Xss=2693, X, =47, X} =
314G | 13)) | T05996 1 hess X2 =30, X3y= 2504, X5, = 335, X3 = 1466, X5 =
20765) | 1759, X2 = 498, Xio= 2848, Xiy= 867, Xir= 1389, Xey=
2136, Xeo= 557

Xi1= 2900, Xi, = 1450, X3,= 1174, X33= 3560, X34 =
ZD = | 4213, Xis= 65, Xis= 1324, Xi= 2693, X;1= 47, X =
41 @ §§123)§ (105496 1 1853, X3, = 365, X35 = 2259, X3 =335, X3y = 1466, Xis =
20765) | 1759, X2, = 498, Xi6= 2848, Xio= 867, Xor= 1389, Xes=

2136, Xgo= 557
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