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REMARKS ON METHODS OF CALCULATING THE CRANE LOAD
CAUSED BY RUNNING ONTO THE TRACK ROUGHNESS

Summary. The article considers the single degree of freedom model of crane during its
passage through the track roughness (the rail step). The influence of various forms of
kinematic excitation to the value of the dynamic coefficient is studied.

UWAGI NA TEMAT METODY OBLICZANIA OBCIAZEN DZWIGNIC
WYWOLANYCH NAJAZDEM NA NIEROWNOSC TORU

Streszczenie. W artykule rozwazano model suwnicy o jednym stopniu swobody
podczas jej przejazdu przez nieréwno$¢ toru (prég), badajac wplyw réznych postaci
wymuszenia na warto$§¢ wspotczynnika dynamicznego.

1. INTRODUCTION

In recent years, several publications on the principles of calculating the dynamic coefficients used
to determine the load-bearing structures of the crane has emerged in the Polish literature. In the works
[1, 2] provision of introduced standard [7], now superseded by [8], were analyzed comparing it with
previous methods of calculation. In [3] the attention to the effects of contact rigidity of a running
wheel on load-bearing structures’ vibration (especially in the case of the use of other than steel
wheels) was drawn. Drawbacks of the single degree of freedom model used in norms [7, 8] were also
pointed out. The base frequency of system’s vibration determined experimentally differ significantly
from that calculated for the model.

Authors [4] criticized the movement trajectory shape of wheel overcoming track roughness from
norms [7, 8], and then proposed [5] a different method of calculating the dynamic coefficient, based
on the assumption of the quasi-rectangular pulse acceleration.

Because norms [7, 8] does not explain all the details of models used, below an attempt was made to
systematize issues relating to methodology of calculating the dynamic coefficient associated with the
phenomenon of overcoming track roughness. At this stage limitation to the single degree of freedom
model was made.
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2. SINGLE DEGREE OF FREEDOM MODEL
Based on Fig. 1, assuming that the coordinate z(z) describes the vibrations around the static

equilibrium position, and A(?) is the function of roughness elevation, the equation of motion can be
written:

mz=F()—mg; Ft)=ch®)-z(t)+z,1; cz,, =mg; (1)

where: m — reduced mass of bearing structure with the load; ¢ — equivalent stiffness of the system.
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Fig. 1. The single degree of freedom model
Rys. 1. Model o jednym stopniu swobody

After transformation and substitution of @* =c¢/m the following equation is received:
2+ @ z=w’h(t) )

The solution of equation (2) with zero initial conditions can be presented in the form of Duhamel
integrals:

2() =0 h(z)sin ot -7)d7 1<t

3)

s

z(t) = a)jh(z') sina(t —7)dT+ ahjsin o(t—17)dt t>t
0 Iy

where collision time ¢, can be estimated as a time of overcoming by wheel centre of crane of the
distance e (Fig.2) with velocity V, ie. t =e/V. From the Fig22 it also follows that:

e=~/2Rh—h> =~|2Rh ; sina =e/R. In the case of the round step (Fig.3) R'=R+r [5] should
be substituted.

Fig. 2. Sharp step Fig. 3. Round step
Rys. 2. Ostry prég Rys. 3. Zaokraglony prég
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According to the norm and accepted indications (Fig.1), the dynamic coefficient is equal to:

mg+mZ . o
g, ="l gy, o ol @)
mg 8

where: Z . - the smallest (negative) value of acceleration acting on reduced mass of crane; P -
auxiliary dynamic coefficient used for further comparisons.

3. KINEMATIC EXCITATION ACCORDING TO THE NORM

Elevation function according to norms [7,8] is described by relation:

s

h(t)zg(l—cosa)st) t<t; h(t)=h t>t; o =7xlt, )

Substituting to (3); and integrating for time #<z,, it is obtained:

h ’ w’
Z(t)zf(l+ﬁcosa)vt—ﬁcosa)t) [NE= (()Y

2 (O W —w ‘

b | (6)
z(t)za(l—coswt—gwtsina)t) 0=,

Solution for time #>f, can be obtained directly by integrating (3), or by superposition method used
for solutions (6):

2
z(t) :h{l—lzw‘vz[cos w(t—t )+cos a)t]} 0+ @,
20 —w %

s

z(t)zh(l—éllfrsinax) =

To evaluate the dynamic coefficient it is indispensible to know the acceleration. It can be directly
determined from formula (2):

z2=a’[h(t)—z(1)] (8)
Hence for >t in case (7);:
2 2
Z=7h%[cos a(t—t)+cosax] 9)
2 wW-w

N

Acceleration extremum can be determined in classical manner, by searching for zero points of
derivative of function (9). Extremum will occur for time instant for which:

sin ai,

= ; at, #x(l+2k), gdy ax, =n(1+2k) to 2=0 (10)
I1+cosax,
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Another method is appropriate transformation of trigonometric functions in formula (9) and
determining the amplitude of function Z(#) changes. For both cases it is obtained that:

T o
(55)

N

(11)

N =

2 _2 2 2
0 [OM0)
Zpw =X ———"5./2+2cosat, =t h— " cos
W, - W -0

where: @/ @, corresponds to coefficient a, introduced in norms [7,8]. Transforming (11) the formula
for coefficient & , from appendix D in norm [7], can also be obtained. In opposition to the norm,
taking into account the possibility of sign change in (11) protects from receiving negative values of
dynamic coefficient ®. Value @, represents collision parameters: @, =7V / m and can change
in a quite wide range. Meaningful influence of velocity V on value @, can be verified.

Exemplary graph of dimensionless function %, /g depending on travel velocity V, for fixed

extr
parameters (frequency of system’s free vibration f=10Hz, @ = 27af, R=0.2m, h=0.001m), is shown on

Fig. 4. For small velocities function is not monotonic (pulsation is visible) what can make exact
evaluation of dynamic coefficient difficult. That part of the graph corresponds to big values of a.
However, usage of models included in norm is restricted only for a,</.3.
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Fig. 4. Exemplary dependence of dynamic coefficient from the speed of the travel of crane
Rys. 4. Przyktadowa zalezno$¢ wspétczynnika dynamicznego od predkosci jazdy suwnicy

From the graph (Fig4) it can be seen also that function 2, tends to limit value:

extr

limz  =thw®, depending only on step height and frequency of system’s free vibration. Lack of

W —o0
monotonicity and limit values occurrence is visible also on Fig. 5.

Extreme value of acceleration may also occur (Fig. 6) while acting the excitation (¢<t,). However,
in this case, it is hard to present a closed mathematical solution. The dependence of the time of
minimum acceleration values was determined numerically. Discrete values were taken

he{1,2,3}[mm] and 2R e {200,315,400,500,630,710,800,900,1000} [mm] . Time, speed and

vibration frequency were modified in discreet manner, correspondingly: Ar=0.00005 [s],

extr
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AV =0.25[m/s] (V<2), Af =0.25[1/s] (f £15). On the basis of Fig. 7 can be determined that
the minimum acceleration may take place in the first phase of excitation only at low travel speeds, or
with very small vibration frequencies not present in real structures. Also using a, factor does not
enable to clearly separate the cases of the minimum in the first or second stage of excitement (Fig. 8).
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Fig. 5. The dynamic coefficient depending on the system’s free vibration frequency and collision parameters
Rys. 5. Wspoélczynnik dynamiczny w zaleznoS$ci od czgstosci drganh wtasnych ustroju i parametréw zderzenia
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Fig. 6. Shape of acceleration function in time (minimum occurs at #<t)
Rys. 6. Przebieg funkcji przySpieszenie w czasie (minimum wystepuje przy 1<t
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Fig. 7. Occurrence of the minimal acceleration values in the first phase of collision during kinematic excitation

(points on the graph)
Rys. 7. Wystepowanie minimalnych wartosci przy$pieszenia w pierwszej fazie podczas wymuszenia kinema-

tycznego (punkty na wykresie)

t_min>t_st

t_min<=t st

Fig. 8. Dependence of occurrence of minimal acceleration at the moment (points on the graph) to coefficient o
Rys. 8. Zalezno$¢ chwili wystapienia minimum przys$pieszenia (punkty na wykresie) od wspétczynnika oy

Fig. 9 shows the dependence of the dynamic coefficient on free vibration frequency for the selected
speeds: 0.3 m/s, 1 m/s and 2 m/s. Shown are three families of curves, each corresponding to a different
height step. Similar families of curves are on the graph of dependencies of the dynamic coefficient on

the speed for fixed free vibrations frequencies (Fig. 10).

4. SHARP OR ROUND STEP
Assuming completely rigid wheel collision with the step, it can be accepted that a wheel centre acts

in uniform circular motion with the angular velocity a): =al/t,=aV /e (Fig. 2,3). In this case, the
elevation function is:
h(ty=h+Rcos(d—@t)—R t<t; h(t)=h t>t,. (12)
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f[Hg]
Fig. 9. Dynamic coefficient depending on free vibration frequency calculated according to the norm for chosen
values of velocity
Rys. 9. Wspétczynnik dynamiczny obliczony wedlug normy w zaleznosci od czgstosci drgan wlasnych dla wy-
branych wartosci predkosci
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[cos(@/t — &) — cos(ax — )]

wR

/

W, —w

1

(R—h)(cosax—1)+
2

nych czestosci drgan wtasnych
z(1)

frequencies of free vibration
Rys. 10. Wspétczynnik dynamiczny obliczony wedtug normy w zaleznos$ci od predkosci jazdy dla wybra-

Fig. 10. Dynamic coefficient depending on travel velocity calculated according to the norm for chosen

Appropriate formulae for the displacement are given below. When 7 <7 :
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when 1>t
1 Rw
z(t)=(R—h)[cosax —cos axt —1 )]+~ ———[cos @t —t,) — cos(ax + )]
‘ 2w +w ‘
L {ea) [cosaxt—t,)—cos(ax — &)] W, #* @ (14)
20 -0 : :

s

s

Z(t)=(R—h)cosa)t+h(1+cosa)t)+;nRsin(a)t+a') W =w

Acceleration can be determined in the same way as the previous, from formula (7). It has the same
limit value: lim 7= hcosax,so lim =+w’h.

Zextr
W, —>0,t,—0 W, —>0,t,—0

The dependence of the dynamic coefficient on its free vibration frequency at a speed of 0.3 m/s is
shown in Fig. 11. As you can see the results differ significantly from obtained according to the norm.
In contrast to the norm, functions @(f) in the graph are increasing monotonically.
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Fig. 11. Dynamic coefficient depending on free vibration frequency for 0.3 m/s speed calculated for sharp step
Rys. 11. Wspélczynnik dynamiczny obliczony dla ostrego progu w zalezno$ci od czesto$ci drgan wlasnych przy
predkosci 0,3 m/s

At low speeds the relative differences in values of coefficients @ calculated for the sharp step and
according to the norm (4®=®-Py) exceed in extreme cases several hundred percent. With the increase
of the speed differences are decreasing. Even at the speed of 1m/s within the frequency range from 2
to 10Hz differences are less than 5% (Fig. 12). It is noted that the larger are the step height and radius
of wheel, the greater are differences.

5. RECTANGULAR QUASI PULSE OF ACCELERATION EXCITATION

The work [5] is considering rectangular quasi pulse of acceleration excitation as the approximation
of a completely rigid collision. The results presented in [5] differ significantly from those obtained
from formulae (13) and (14). Probably the reason is the adoption of zero initial conditions, which is
equivalent to the action of excitation directly to the mass, rather than on the elastic bond.

From the formula (12) follows that, the wheel centre moves with centripetal acceleration

h(t)=-Ra& cos(—wt). For small angles « is sin@=a, cos(—a@t)=1. Therefore
@ =V /R .Hence h(t)=—V*/R=—-a.
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Fig. 12. Relative difference of dynamic coefficients (sharp step and norm) for 1 m/s speed
Rys. 12. Wzgledna réznica wspétczynnikéw dynamicznych (ostry prég i norma) przy predkosci 1 m/s
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Fig. 13. Differences of acceleration function: sharp step and acceleration pulse
Rys. 13. Réznice funkcji przySpieszenia: ostry prog i impuls przy$pieszenia

Differentiating twice (2), accepting h(t)=—a[H (t)—H (t - t,)], where H(t) the Heaviside’s
function and substituting w = 7 the equation with respect to acceleration is received:

Ww+@'w=-walH(t)-H(t-t,)] (15)
Initial conditions (using (8)):

w(0) = 2(0) = @*[h(0) - z(0)] = 0;

16
Ww(0) =2(0) = @’[h(0) — 2(0)] = @°h(0) = @’ W, Rsin @ = @’Ve/ R. (10
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Hence the searching acceleration is:
wVe .
Z=w= 7s1na)t—a[1—cos at]H(t)+a[l-cosa(t—t )| H(t—t,) a7

Even for the greatest possible value of the angle differences between the results obtained from the
formula (17) and the results for the case of a sharp step is negligible (Fig. 13).

6. THE RAMP EXCITATION

The case of pulse-step (ramp) excitation is also analyzed:

h(t):tht t<t; h(t)=h t>t (18)

The following results are obtained:

N

z(t):ﬁ[t—isina)t] t<t
.o

heoo1 1 (19)
2(t)=—[t,+—sina(t—t)——sinax] >t
t (0] n)

N

Hence, the acceleration in the second phase of excitation is (after the necessary transformations):

wh . wt t
z2(t)=2—sin—cos w(t — =) (20)

t 2 2
A major drawback of excitation in the form (18) is the discontinuity of the derivative at the point
t=t,, which causes a discontinuity of adequate solutions. As with other forms of excitation with the

increase in speed (¢, — 0) acceleration amplitude tends to @*h value.
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Fig. 14. Relative difference of dynamic coefficients (ramp and norm) for 1 m/s velocity
Rys. 14. Wzgledna réznica wspéltczynnikéw dynamicznych (ramp i norma) przy predkosci 1 m/s
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Like in the previous case relative differences in the values of the dynamic coefficients, calculated
for the ramp excitation according to the norm, are decreasing with increasing speed. At a speed of
1m/s are still quite large (<25%, Fig. 14).

7. DISCUSSION OF RESULTS AND CONCLUSIONS

Each of these examined excitation functions are far from reality. Designation of an appropriate
trajectory of centre of wheel during the travel of crane on roughness is a difficult task because of the
nature of the phenomenon. It seems reasonable to consider the wheel travel in terms of impact. During
the collision of the wheel with the rail local deformation will occur, which in compression phase will
result in the wheel centre approaching the rail (decreasing radius), and then in the restitution phase the
remoteness (radius increases). Component of velocity in the normal direction of impact may be so
large that according to the literature (e.g. [6]) elasto-plastic collision will occur.

It can be assumed that the form of excitation function selected in the norms [8, 9] is a compromise
between the ease of obtaining a mathematical solution, and the attempt to take into account the effects
of a collision. In the absence of other possibilities should be taken to excitation (5) given in the norm
and resulting from it formulae (bearing in mind the defects of the above-mentioned).

Analyses carried out in the work clearly confirm the trivial fact that the dynamic coefficient
increases with step height and decreases with the increase of wheel radius. Rounding the step increases
radius taken to the calculations. The dynamic coefficient also increases with increase of free vibrations
frequency (except of cases with small travel velocity and the excitation according to the norm).

With the increase of travel velocity dynamic coefficient tends to the limit value. Form of kinematic
excitation is increasingly less relevant. An important role is played by the step height and frequency of
the system’s free vibration.

The actual step height is taken into account in the presented results of the calculations, which
influences the parameters of a collision. In the calculation of the dynamic coefficient, the possible
height on which crane’s mass centre can be elevated, is needed to be taken into account: h;=kh, where
k — proportion coefficient, depending, inter alia, on the number of wheels [4]. The values given in the
charts (ex. 9 and 10) should be multiplied by the estimated value of coefficient k (O<k<=1).
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