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TWO–LANE TRAFFIC ANALYSIS BY MEANS OF CELLULAR AUTOMATA 

SOLUTIONS WITHIN A HIGHWAY MODEL 

 
Summary. A discrete model to simulate two–way traffic flow is introduced. The well 

known cellular automata Nagel-Schreckenberg model is extended by adding another road 
lane. New sets of state rules is developed to provide lane change maneuver for vehicle 
overtaking and returning to lane designated for slower traffic. Results of numeric 
simulations are consistent with the so-called fundamental diagram (flow vs. density), as is 
observed in the real free-way traffic. 

 
 
 

MODELOWANIE AUTOMATEM KOMÓRKOWYM RUCHU NA 
DWUPASMOWEJ AUTOSTRADZIE 
 

Streszczenie. W Artykule przedstawiono dyskretny model ruchu drogowego. Znamy 
model Nagela-Schreckenberga oparty na automatach komórkowych został rozszerzony o 
dodatkowe pasmo ruchu. Opracowano nowy zestaw reguł zmiany stanów umożliwiający 
manewr zmiany pasa ruchu-wyprzedzania oraz powrót na pas przeznaczony do jazdy z 
mniejszą prędkością. Wyniki numerycznych symulacji są zgodne z podstawowym 
diagramem fundamentalnym (przepływ versus gęstość), zależnością obserwowaną w 
ruchu rzeczywistym. 

 
 

1.  MOTIVATION – TRAFFIC FLOW QUALITY 

 

Modeling traffic transport problem is very interesting and important for its dynamics and serious 
dramatic consequences in real life. The main goal of traffic flow control and road network design is to 
provide a qualitative description of traffic flow, especially to answer the question whether the traffic 
flow is equal to demand flow level over network in time and space [3]. The models, we examined, can 
be useful to provide proper tools to perform simulations for various scenario i.e. closed lane segment, 
lane speed limit, accidents, start-stop condition. 
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2. TRAFFIC FLOW PARAMETERS 

 
Before we introduce basic traffic flow models, it is essential to point  out a group of traffic stream 

related parameters: speed u , flow q  and density k . Let ∑= inN denotes the total number of 

vehicles traversing dx  in time T then: 
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The mean flow q  of vehicles traveling over a section of a roadway of length X  during a time 
interval T  is the total distance traveled on the roadway by all vehicles which were on this section 
during any part of time T  divided by XT , the area of the space-time domain observed.  

The mean concentration k  of vehicles traveling over a roadway section of length X  during a 
time interval T  is the total time spent by all the vehicles on X  during a time T  divided by XT .  

The mean speed u of vehicles traveling over a roadway section of length X  during time T  is the 
total distance traveled on the section by all vehicles that were on it for any part of time T  divided by 
the total time spent by all vehicles on the section during time T  [1]. Many researchers use other 
formula Eq. (2) to compute flow. The time-averaged flow q  between i  and 1+i  is defined by: 
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where: 11 =+ )t(n i,i  if the car motion is detected between sites i  and 1+i  [7]. One can find some 

analysis and discussion upon various methods of flow computations in [13]. 
 

In our research we focus on the main flow-density relationship which is the most important to 
reflect the traffic dynamic. This dependency is known as a Fundamental Diagram and is postulated as 
a certain function used for approximation of observational data (see Fig. 1). 

 

Fig. 1. Real-life observation 
Rys. 1.  Obserwacje rzeczywiste 
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With the basic relationships among traffic flow, speed and density, a special attention can now be 
directed toward the scale of view of traffic flow: macroscopic or microscopic.  

 
 

3. CLASSICAL APPROACH 

 
In the classical approach traffic is mainly modeled as aggregated vehicle counts or traffic streams. 

The macroscopic treatment views traffic as fluid moving along a duct which is road lane. The 
microscopic treatment considers the movement of individual vehicles as they interact with each other. 
In both approaches partial differential equations or delay differential equations are used. 

3.1. Macroscopic approach 

The macroscopic treatment views the traffic as a continuum akin to a fluid along a duct which is a 
highway. The discussed traffic along a reasonably crowded road has no appreciable gaps between 
individual vehicles. in such cases traffic may be viewed as continuum, and its characteristic 
correspond to the physical characteristic of the imaging fluid. Macroscopic traffic flow models do not 
distinct vehicle-driver individual behaviour. This is the main issue which makes a lot of phenomena 
cannot be observed during simulations [1]. 

First the classical macroscopic Lighthill-Whitham traffic flow model Eq. (3) is introduced, where 
k  is the cars concentration on the road and q  is he traffic flow [1]. 
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The traffic flow q is regarded as a function of concentration )k(qq:k = , thus after 
differentiating Eq. (3) becomes : 
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where: k/qV ∂∂=  is an average discontinuity speed at point k . Dependence )k(qq = is defined as 
an arbitrary function and relates to used model. Presented equation (4) as the first order, scalar 
continuity equation of hyperbolic type, can be solved using Godunov approximation scheme, also 
known as up wind scheme [5]. 

3.2. Microscopic approach 

Microscopic traffic flow models aim to describe the behaviour of individual vehicle-driver unit 
with respect to other vehicles in the traffic stream. Microscopic models are very suitable for the 
description of multiple user-class flow. However, the more realistic microscopic flow models are very 
complex. What is more, it has been argued that the assumptions underlying the equations describing 
the motion of each individual car are difficult to validate, since human behaviour in real-life traffic is 
difficult to observe and measure. This is unfortunate, since for reliable simulation, the microscoping 
parameters have to be just right. Consequently, many researchers and traffic flow management 
software use macroscopic traffic flow models instead [3].  

 
Car following model 

 
In car-following model (CFM) we postulate that an individual car’s motion only depends on the 

car ahead [4]. Analysing driver behaviour, one can discover that human being has a time lag in 
reacting to any input stimulus. Decision of using brake pedal has some delay [1]. Observations being a 
basis for theories of this sort help us to define the simplest linear CFM equation: 
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Equation (5) is a class of second order of neutral difference-differential equation, namely NDDEs. It is 
important to notice that there is no universal numerical method to solve NDDEs. 

After linearization, we assume that acceleration and deceleration occurs instantaneously. Now, the 
equation (6) forms a simple system of ODEs which can be numerically solved using 4th order Runge-
Kutta method. 
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Making another assumption: in steady state all vehicles are equidistant apart and move with the 
same velocity, one can develop from Eq. (6) analytical solution, and consequently, velocity-density 
relationship: 
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where: u  is mean speed, and k  is density. All simplifications which stand behind Eq. (5) have a 
dramatic consequence: we lost possibilities of modelling individual driver behavior. 
 
 
4. DISCRETE MODELS 

 
In the discrete models, the continuous quantities such as positions and velocities of a car are 

approximated by (discontinuous) integers numbers. In our opinion, however, considered models have 
the ability to show phenomena observed both at macroscopic and microscopic level. 

4.1. Cellular Automata–traffic flow models 

We focus on the cellular automata approach (CA) instead of on the classical ones (fluid–dynamics 
approach [1]) because of one important property of cellular automata, namely the lack of stability, i.e. 
very small changes in transition rules or states can have very dramatic consequences [6]. The biggest 
advantage of CA is that each cell of the automaton can reflect individual object characteristics. 
Recently the cellular automaton approach is chosen more often in different area, e.g. for biological 
models, modeling spread and movement of an oil slick, simulation of behavior of vivid entities 
population and modeling predator-prey systems or to model physical problems like heat conductivity 
[6, 8]. Because cellular automata are used widely in various disciplines, many definitions exist. We 
quote one of them [8]. 
 
Def. 1 Cellular automata are dynamical systems in which space and time are discrete. A cellular 

automaton consists of a regular grid of cells, each of which can be in a finite number of k possible 

states, updated synchronously in discrete time steps according to local, identical interaction rules. The 

state of a cell is determined by the previous states of surrounding neighborhood of the cell. 
 
We summarize the physical and evolutionary properties of cellular automata: 

  CA develops in space and time. 

  CA is a discrete simulation method, hence Space and Time are defined in discrete steps.  
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  CA is built up from cells, that are lined up in a string for one-dimensional automata arranged 

in a two or higher dimensional lattice for two- or higher dimensional automata. 

  The number of states of each cell is finite. 

  The states of each cell are discrete and all cells are identical. 

  The future state of each cell depends only of the current state of the cell and the states of the 

cells in the neighborhood. 

  The development of each cell is defined by the same set of deterministic or probabilistic rules. 

4.2. Basic Nagel-Schreckenberg model 

Known as NaSch cellular automata model was originally defined by Nagel and Schreckenberg 
[11] in 1992. The model concerns only one lane with periodic boundary condition. This means the 
total number of vehicles is constant. The cell is empty or occupied by vehicle. All the cells are updated 
simultaneously. We use notation as follow: ix  denotes position of the vehicle, iv  is speed of the 

vehicle and ig  is a gap between leader and follower, 11 −−= + iii xxg .  

Then the set of rules is defined: 

  Acceleration of free vehicles: 11 1 +=→+>∧< + iiiimaxi vvvgvv  

  Slowing down due to other vehicles: iiii gvgv =→−> 1  

  Random braking (noise): 10 1 +=→> + iii vvv with probability p  

  Vehicle Motion: iii vxx +=+1  

Basic NaSch model assumes constant p  for the third rule. It is insufficient for modeling some 
traffic flow phenomena i.e. start-stop state. Other researchers extended ”random braking” rules and 
proposed velocity-depended randomization (VDR) approach. It is a simple idea, the probability p  is a 

function of the vehicle speed ( )( ) tvpp = . In the simplest case the probability function is defined as 
follows: 
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This makes the flow characteristics closer to realistic values. The phenomenon of uncertainty of 
vehicle behavior (which depends on p ) in the one- and two-lane models is discussed in [9]. 

The basic limitation of NaSch models is that all drivers behave in the same manner. One should 
take this into account to develop model where different vehicles are assigned different maximum 
speeds. The tolerated gap between vehicles is driver dependent or is a function of speed. 

 
 

5. TWO-LANE CELLULAR AUTOMATA TRAFFIC MODEL 

 
Presented approach is based on CA model which is described as follows: on a ring with L  sites 

every site can either be empty or occupied by one vehicle with velocity ( )maxV,...,,V 10∈ . At each 

discrete time step the arrangement of N  cars is updated in parallel, according to the set of rules. In the 
multi-lane case, we simply take single lane and place each one alongside the other. We consider a two-
lane model with periodic boundary conditions, where additional rules defining the exchange of 



30                                                                                    M. Burzyński, T. Schulz, P. Zając, W. Kosiński 
 
vehicles between the lanes are introduced. It is clarified that this extension can be made without 
changing the basic properties of the single-lane model. 
 

 

Basic set of rules 

 
For our model, we adapt NaSch set of rules to provide vehicles movement. We intentionally, have 

not included ”random braking” rule. Such model is known as deterministic NaSch traffic flow model 
[7]. Because we are using now a deterministic, reversible and finite CA model with periodic 
boundaries, the corresponding traffic system is periodic in its system states. 
 
Addition set of rules 

 
After many numerical experiments, we simplified our model and introduced no-accident 

condition. It means the set of rules have to preserve against situations, where more than one car could 
occupy the same cell. We realize this approach help us to define some generic rules–further research is 
under development. 

Overtaking maneuver uses an extended neighborhood and covers sites behind and ahead of the 
vehicle, on both lanes. We assume the driver only detects the space occupancy of his neighborhood. 
The speed of the other vehicle on the highway remains unknown for him. In consequence, some other 
strong assumptions have to be made to assert ”no accident condition”. We require empty 
neighborhood behind the car to ensure that only one car overtakes the considered cell. The need of the 
empty neighborhood behind the car on the left lane protects against collisions with the vehicles that 
drive along the adjoining lane. All required conditions are below: 

 10111100 +=→≥∧≥∧≥∧< −+

+−−

j,)D(j,j,maxj,maxj,maxj, VLDDDDDDVV  (9) 

 
where: j,V0 – vehicle speed on the right lane, at relative position j, maxV – vehicle preferred maximum 

speed, −

j,D0 – distance to the nearest follower at the right lane, at relative position j, −

j,D1 – distance to 

the nearest follower at the left lane, at relative position j, maxD – distance cover by a vehicle at 

maximum speed (per one iteration), +

j,D1 – distance to the nearest leader at the left lane, at relative 

position j, D – distance cover by a vehicle at spot speed, )D(j,L 11 −+ – value of cell at relative position 

1−+ Dj , at the next time step 
 

Returning maneuver satisfies requirement that left lane should be mainly used for overtaking 
purposes. The rule is similar to that one used in overtaking maneuver. 

 j,)D(j,j,maxj,maxj, VLDDDDDD 011010 =→≥∧≥∧≥ −+

+−−  (10) 

The rules applying schema 

 

The exchange rules are defined by the following two criteria: first, a vehicle needs an incentive to 
change a lane; second, a lane change is only possible if some safety constraints are fulfilled. Rules are 
processed in following priority order: 
returning maneuver →overtaking maneuver →moving (NaSch rules’ set) 
but only one single rule is applied per iteration In most situations, vehicles just keep moving on the 
same lane. 

The above set of rules is minimal in the sense that leads to a realistic behavior and the so-called 
fundamental diagram, i.e. the relation between flow and density, is reproduced correctly. 
Unfortunately some phenomena like spontaneous jamming will not occur in such system. One of the 



Cellular automata two-lane traffic flow model                                                                                      31. 
 
solutions to perform more realistic simulation using deterministic cellular automata model is to 
introduce stochastic boundary conditions [14] or open boundary conditions as well. 
 

 

6. THE RESULT OF THE SIMULATIONS 

 
The results [15] are obtained from simulations on a lattice of 2*500 sites with random initial 

configurations of vehicles. The population of N  cars were randomly distributed in on both lanes 
around of complete loop with initial speed sampled from ( )max,0 V . The sensitivity analysis was done. 

The size of automata and number of iterations equal 1000 is sufficient for the system to reach a 
stationary states. 

 

Fig. 2. Numeric simulations for various preferred speed distribution 
Rys. 2. Wyniki symulacji numerycznych dla różnych rozkładów prędkości preferowanej 
 

We studied a homogeneous state, where preferred speed distribution is uniform or constant. At 
this point of our research, we investigate some relations between preferred speed distribution and 
extrema point on the fundamental diagram (see fig. 2). At higher density, flow is stabilized and does 
not depend on driver comfortable speed preferences. 

 

 

7. CONCLUSION 

 

The proposed model is based on the Nagel-Schreckenberg cellular automata model without VDR. 
The solution of highway traffic dynamics is partially agreed with real-life traffic. The lack of some 
stochastic noise influences the model behaviour. Some class of phenomena – spontaneous, unstable 
state, i.e. jam creation, kinematic waves, will not be reproduced in strictly deterministic CA model. On 
the other hand, in further studies we are planning to verify how the lane changing maneuver changes 
the fundamental diagram. There is a need to introduce some kind of algorithm (in substeps or at a 
random choice) to fulfill no-accidents requirement and make driver behavior less preservative. In most 
times, there are no cars exchanging between lanes in discussed model. Cars are moving along the same 
lane regardless of density. The two-lane traffic model behaves rather like a two-independent lane 
traffic model. In the near future, we are going to pay more attention to the set of rules that governs 
lane changing maneuvers. 
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